JUSE-StatWorks/V5 リビジョンアップ版 (R5.40)

で強化された機能とメリットについて

(株)日本科学技術研修所 数理事業部 冨田 真理子

JUSE-StatWorks

1. はじめに

JUSE-StatWorks/V5(ジュース・スタットワークス・バージョン・ファイブ)(以下, StatWorks/V5)は,弊社,(株)日本科学技術研修所が開発・販売を行っている統計解析パッケージです.

表. :	StatWorks/V5 の主な製品	
製	価格(税別)	
JUSE-StatWorks/V5	総合編 プレミアム	228,000 円
JUSE-StatWorks/V5	総合編	168,000 円
JUSE-StatWorks/V5	QC 七つ道具編	78,000 円
JUSE-StatWorks/V5	品質管理手法編	128,000 円
JUSE-StatWorks/V5	品質工学編	45,000 円
JUSE-StatWorks/V5	SEM 因果分析編	78,000 円

※価格はスタンドアロン版(単品)の価格となります

2015 年 12 月末に,機能アップや細かい不具合修正を行った StatWorks/V5 のリビジョンアップ版 (アップデート版) R5.40 を公開いたしました. R5.40 は,弊社 web サイトより,無料でダウンロードいただけます. なお,R5.40 以降のリビジョンアップ版 (R5.41 など)が出た場合,それにアップロードいただければ,R5.40 での機能アップ点は全て入ります.

本資料では、StatWorks/V5 リビジョンアップ版 R5.40 での機能アップ点と、それらを使うことによって生じるメリットについて説明いたします.

2. 機能アップ点一覧

リビ	ジョンアップ版 R5.40 での	機能アップ点の概要は,	下表の通りです.
No	解析手法	追加機能	概要
1	レフトガニノ 竺田回	細胞分用の但左	屋町めよずいい、御安た合い

-	741 B1 4 1= 1		
1	ヒストグラム・管理図	解析結果の保存	・層別やオプション設定を含めた全ての解析プロセス
	(QC 七つ道具)		を保存して,再現できるようになりました.
2	散布図・単回帰分析・モ	層別処理の機能強化	・層別後の散布図で、データ探索や2次回帰曲線の当
	ニタリング		てはめや統計量の表示ができるようになりました.
			・モニタリングの二重層別ヒストグラムで、統計量が
			表示できるようになりました.
3	直交表実験のための計	実験計画法の機能強	・手法「直交表実験のための計画」で、混合系直交表
	画・直交配列表・多元配	化	や多水準・擬水準を用いた計画が作成できるようにな
	置分散分析・直積法・累		りました.
	積法		・P値だけなく、分散比を基準にした自動プーリング
			ができるようになりました.
			・分散分析表上に、プーリングした要因を表示できる
			ようになりました.
			・要因効果図上で、各要因が有意かどうかを表示でき
			るようになりました.
4	パラメータ設計	データや実験条件の	・ワークシートに入力したデータや因子情報,わりつ
		インポート	け情報,信号因子の水準値を,解析時に読み込んで使
			えるようになりました.
5	最尤推定	パラメータおよび信	 ・故障データから推定したパラメータ(ワイブル分布,
		頼区間の表示	指数分布)および、それらの信頼区間を出力できるよ
			うになりました.
6	2つの母平均の差の検定	等価自由度の表示	・2 群の母集団の分散が等しくない場合に Welch の検
			定を行いますが,Welchの検定に用いる等価自由度の
			値を表示するようにしました.
7	階層的クラスター分析	デンドログラムの全	・デンドログラムを1画面に表示し、1ページ内に貼
		体表示と貼り付け	り付けや印刷ができるようになりました.
8	全手法	変数指定の使い勝手	・Excelのカンマ形式と指数形式の数値を量的変数と
		やExcelとの互換性の	して、そのまま読み込めるようになりました.
		向上	・変数指定ダイアログ上で、Shift キーによる変数の
			複数選択ができるようになりました。

3. 機能アップ点のご紹介

3-1. 解析結果の保存(ヒストグラム,管理図)

3-1-1. 解析プロセスおよび結果の保存(ヒストグラム)

「データだけでなく解析結果も保存したい」というご要望にお応えして、ヒストグラムの層別やオプショ ン設定を含めた全ての解析プロセスを保存できるようになりました.

..... 解析結果画面を画像で保存するだけではなく、解析プロセスと出力結果を全て保存して、 再現できます.それにより、ヒストグラムの層別や外れ値チェックなど、解析をさらに進 めやすくなります. さらに最初の解析者とは別のスタッフも StatWorks 上で解析結果を確 メリット 認することが簡単になり、課題や問題点を共有しやすくなります.

3-1-2.解析プロセスおよび結果の保存(管理図)

ヒストグラムと同様に、管理図の解析プロセスと結果が保存されます.

ヒストグラムと同様に,管理図も解析の続きがしやすくなります.最初の解析者と別のス タッフが StatWorks 上で解析結果を確認したり,再解析したりすることが容易となります.

3-2. 層別処理の機能強化(散布図,単回帰分析,モニタリング)

3-2-1. 層別散布図でのデータ探索と2次回帰曲線表示(散布図,単回帰分析)

これまで,層別後の散布図ではデータ探索や2次回帰曲線の表示ができませんでした.今回の機能強化では, QC 七つ道具の散布図や,多変量連関図から拡大した散布図,単回帰分析の散布図において,層別後もデータ探索 をして各プロットの名称を確認できるようになりました.さらに,2次回帰曲線を当てはめたり,散布図上に統計 量を表示できるようになりました.

層別した後の散布図でも,層別をする前の散布図と同様に,2次回帰式を求めたり信頼・ 予測区間を求めるなどの,柔軟な解析が行えます.特に層別後に「データ探索」が行える ようになったことにより,効果的に,特徴的なサンプルを抽出できます.

JUSE	Package Software - [散布回[材料硬度,製品硬度,加工磚械別]]	×
ワークシート 手法道択 解析 装飾		_ = ×
	20 2	
X軸: 材料硬度 Y軸: 製品硬度 NTRA NTR	AR (Z ML - 0.5)、 データ記念 サンプル考示の活面 マートング デートング	料品要求のびらうを表面(44) 第回回。今天登録第51、工作 そこのリング(単品発展)立て作 ステリング(単品発展)立 第次分号表 。 第点分号入 数本回(44)等点別品要素加 数本回(44)等点別品要素加
n_{3} n_{3} d_{4} d_{7} d_{7} d_{7}	٢	>

3-2-2. 二重層別ヒストグラムに統計量を表示(モニタリング)

手法「モニタリング」で量的変数1つ+質的変数2つを指定することにより二重層別ヒストグラムを描けます. その二重層別ヒストグラムに各種統計量(サンプル数,平均値,標準偏差,(規格値がある場合に)工程能力指 数)を表示できるようになりました.また,「度数分布表」ボタンを押すと,二重に層別した後の度数分布表が 確認できます.

例えば「製品硬度」を「加工機械」と「添加剤」の組み合わせで層別したい場合など,二 重に層別して変数の特徴を見たい場面はよくあります.二重層別後のヒストグラムの形状 や,平均値・標準偏差,工程能力指数を比較することによって,データの特徴を掴みやす くなったり,問題点を発見しやすくなります.

3-3.実験計画法の機能強化(直交表実験のための計画,直交配列表,多元配置分散分析,直積法,累積法)

3-3-1. 計画機能と解析機能の統合(直交表実験のための計画)

手法「直交表実験のための計画」で,混合系直交法や多水準・擬水準を用いた計画が作成できるようになりました.そこで作成した計画は,対応する手法「直交配列表」で解析できます.

水準数が2や3の列が存在する混合系直交表を用いることによって,より多様な実験計画 を作ることができます.多水準や擬水準を用いた実験も,作成から解析まで一通りスムー ズに行え,手法の誤用を防げます.(以前はパラメータ設計の手法を使う必要がありました)

直交表種類の選択	擬水準設定	×
L8(2^7) L16(2^15) L3(2^31) L64(2^63) L9(3^4) L27(3^13) L81(3^40) L12(2^11) 19(2^1 × 3^7) L18(6^1 × 3^6) L36(2^111 × 3^12) OK $\frac{1}{2}$ +2724	A:A因子 初期水準 191 291 実験水準 1 2 3 2 1 2 3 2 1 3 4 2 2 1 3 4 2 2 1 3 4 2 2 1 3 4 2 2 1 3 4 2 2 1 3 2 1 1 3 2 1 3 3 2 1 3 3 3 3 3 3 1 5 5 5 5 5 5 5 5 5 5 5 5 5	

<u>3-3-2.P</u>値だけでなく,分散比を基準にした自動プーリン(直交配列表,多元配置分散分析,直積法,累積 法)

分散分析表の自動プーリング機能を、P値だけではなく、分散比を基準にして行えるようになりました.分散比 によるプーリングは、(一財)日科技連のベーシックコースや実験計画法コースのテキストに準拠しています.

要因の数が多い時に,分散分析表で自動的にプーリングを行うことがあります.自動プー リング機能が拡張子,P値をもとにするだけではなく,分散比の基準値を与えて行うこと できるようになりました.(一財)日科技連のセミナーでも,分散比の使用が推奨されてい ます.

自動	動プーリング
プーリングの基準値を設定して下さ 設定した条件を満たす要因をプーリ (P値(上側):1.0, 分散比:0.0を	さい。 リングします。 設定するとブーリングは行われません)
○P値〈上側〉	
要因: 0.2 より大きい	誤差: より大きい
	ОК
要因: 2.0 未満	誤差: 未満 キャンセル

3-3-3. 分散分析上で誤差にプーリングした要因を表示(直交配列表,多元配置分散分析,直積法,累積法)

従来,分散分析上で,どの要因を誤差にプーリングしたのかを画面上で表示していませんでした.今回の機能 強化からは,誤差にプーリングした主効果や交互作用を表示して,確認できるようになりました.また,要因効 果図では,オプションで,各要因が1%有意か5%有意かどうかを示せるようになりました.

分散分析上で, 誤差にプーリングをした要因が分かるため, 効果の大きい要因ばかりでな く, 効果の小さい要因がどれであったかが明らかになります.また, 要因効果図上で有意 かどうかを表示できるために, 要因効果図を見て, どの水準が最適なのかに併せて, どの 要因の効果が大きいかが判断できます.

東田// 3 385968. 東正道 男王 385968. No 7 - リング要広 1 A:A因子 677.6911 1 677.6911 2.647 0.132 2 B:B因子 1100.4225 1 100.4225 4.650 0.054 3 A5 1262.9139 1 1262.9139 1 1262.9139 4.933 * 0.048 4 C:C因子 0.016 1 0.0116 0.000 0.995 256.0020 142.004 815.571 AC PC A5C	ワークシー	*240 24 45 (5) 35 (5) 87		a 25 2 r-1/r r-1	7 25 7 7 - 167	たた。 #5# 0'30 #5#0'30	JUSE Packag 5.4 正項 원.7*-5 5.1 7분6 * 1 7분0	e Softv 小頭回	vare - [分 電量 部 単び りつドウ	 予数分析書 ① 料合 ① 料合 ○ 料合 ○ 料合 ○ 料合 					
No 要因 平方和 自由度 分散比 検定 P値 (上側) σ [*] 2 ブーリング要因 1 A:A因子 677.6911 1 677.6911 2.647 0.132 「 「 1 1 1 1 677.6911 2.647 0.132 「 「 1 1 1 109.4225 1 109.4225 1 109.4225 4.650 0.054 1 1 1 1262.9139 4.933 0.048 1	実験デーク	分数分析	A 接定值	州臣											 PART2 第回の数5込みと創造 日間 第回の数5込みと構造条件
1 A:A因子 677.6911 1 677.6911 2.647 0.132 2 B:B因子 1190.4225 1 1190.4225 4.660 0.054 0.016 0.016 3 AB 1262.9139 1 1262.9139 4.933 × 0.048 0.955 0.016 0.0116 0.0106 0.985 5 14 # CrC因子 0.0116 0.000 0.985 256.0070 142.0054 615.571 6.0 D.64 0.016 0.016 0.000 0.985 256.0070 142.0054 615.571 6.0 D.64 0.016	980.9468 No		要因	平方和	自由度	分散	分散比	検定	P値	(上创)	σ [^] 2 占推定值	下限(90%)		ブーリング要因	
2 B:B医子 1190.4225 1 1190.4225 4.650 0.054 3 AB 1262.9139 1 1262.9139 4.933 × 0.048 4 C:CE子 0.0116 1 0.0116 0.000 0.995 5 経営 ABC 226.0020 256.0020 142.0054 815.571 AD DC ADD	1	-	A:A因子	677.6911	1	677.6911	2.647	-	-	0.132	ANALITE, ALL THE	1 Ipt (www.)	alaph (control		· 578-636
3 AB 1262.9139 1 1262.9139 4.933 * 0.048 4 C:CEJT 0.0116 1 0.0116 0.000 0.985 5 45 4 APC - 2916 066 11 256 0020 - 256 0020 142 0054 815 571 AC 50 APC - 495	2		B:B因子	1190.4225	1	1190,4225	4.650			0.054					
4 C:CB子 0.0116 1 0.0116 0.000 0.985	3		AB	1262.9139	1	1262,9139	4.933	8		0.048					* #2(671))
5 歳差 APCr 2018 0060 11 256 0070 256 0070 142 0054 815 5710 AC PC APC 875 85	4		0:0因子	0.0116	1	0.0116	0.000			0.995					. EONZ
0 BY/E ADD 201.0009 11 201.0009 11 200.0079 200.0079 142.0009 010.0710 ADD.ADD	5	誤差	ABCr	2816.0869	11	256,0079					256.0079	142,9054	615.571	AC,BC,ABC	林田一知名
6 31 5947.1259 15	6		81	5947.1259	15										正线端室75/1

<u>3-4. データや実験条件のインポート(パラメータ設計)</u>

手法「パラメータ設計」では、Excel からデータや因子の情報をコピー・貼り付けることによって解析が行えま す. 今回の機能強化からはさらに StatWorks のワークシート上にデータや因子情報,わりつけ情報,信号因子の 水準値の情報を持った時も、それをインポートして、解析に利用できるようになりました.また逆に、パラメー タ設計で設定したそれらの情報をワークシート上に登録できるようになりました.

予めワークシート上に各条件を入れておけば, Excel からの貼り付けや再入力の手間なく, スムーズに解析が行えます.

ワークシート 手法選択 解析 装飾 ● 印刷 -● 印刷 -▲ 212 - ・
※ 4 4 5 - 24 系4 系4 素4 素4 素1 素1 素1 素1 素1 素1
第8971 // (2) 素1
第8971 // (2) 解析データ 効果・推定 実験データ 制御四子 調整四子 信号四子 入出力回 34比・想度 計算過程 特性種類:ゼロ点比例式信 (計画:直文表[L18 **胡椒四子:**開合
 N2
 N1
 N2

 0.310
 0.280
 0.440
 0.410

 0.280
 0.230
 0.440
 0.320
 1 2 3 4 5 6 7 8 割1 実験46 造へしゆ 外装と早 吸気部と 閉口部2 排気ダイ 軟蛋上象 数子を N I なし、2 2 10 10 10 10 10 大 大 たし、 50
 N2

 0.120

 0.180

 0.380

 0.250

 0.240

 0.330

 0.130

 0.240

 0.230

 0.240

 0.230

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.240

 0.410

 0.410

 0.410

 0.230

 0.230
 中大大な中中 80 40 110 60 40 110 60 40 110 60 40 110 60 40 110 60 40 110 60 40 なななななななるああああああああ 0.310 0.220 0.200 0.000 0.190 0.190 0.190 0.190 0.190 0.240 0.300 0.240 0.300 0.240 0.230 ・な中な大な大中 0 30 15 0 30 30 30 15 15 0 30 30 30 30 30 30 (パラメージ2日)特性値、実験条件を推定します。 特性値(量的変数):1~6(測定の通道)赴分) 実験条件(質的変数):0~8(因子数分) たけごさいサングルを3100~1 大な中大な大な中な 中な大大中ななた 30 15 大いちについのするか人 48%. ワークシート上のデータ 30 15 15 0 実計名 MINI No. 2 実換 N2 杜위 N HINI S No. 1 大社名 9275年45 住衆切子の本 + 010000000000 H CCCCC 天社会 通べし根 外属と板 板矢部と 開口部の 接外がつ C8 C8 C18 C18 わりつい * 5182 社図 No. 実計名 S 16 わりつけ 東路 518 in the second なへ通む キャンセル -▼ 副田の湯肥油開き

3-5.パラメータおよび信頼区間の表示(最尤推定)

信頼性解析の手法「最尤推定」において、故障データから推定したパラメータ(ワイブル分布のmやn、指数 分布のλ)および、それらの信頼区間を出力できるようになりました.

						JU	SE Package	Software - [最大	[推定]				×
ワーク	シート 手法道	祝 解析	装飾										_ ~ X
日本 (中日) (中日) (中日) (中日) (中日) (中日) (中日) (中日)	7 14 43 页 H - 医小-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	能統計"計"(1) 変数再描定 解析支援	変数要録 れつうう 変数要録 れつうう	 福岡 福田 福田 日本 <li< th=""><th>ナ・ ト・ リクフ</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></li<>	ナ・ ト・ リクフ							
分布;	ワイブル分布	×				0					(c)		PART2 新道装置の加久性の建定(ワイ) 新道装置の加久性の建定(ワイ) 新道装置の加久性の建定(ワイ) 新道装置の加久性の推定(ワイ)
No.									形状パラメータ	95%信頼区間	尺度パラメータ	95%信頼区間	
	項目名	故障数	打切り数	総データ数	形状パラメータ	尺度パラメータ	γ	MTTE	下限値	上限値	下限値	上限値	
1	故障時間	10	0	10	2.6192	4048.0898	0.000	3596.3544	1.4276	4.2776	3029.2161	5333,7440	
													()
17"1													

3-6. 等価自由度の表示(2つの母平均の差の検定)

手法「2つの母平均の差の検定」で、2群の母集団の標準偏差(分散)が等しくない場合、Welch(ウェルチ)の検定が行われます.(一財)日科技連のベーシックコースのテキストに準拠して、Welchの検定に用いる自由度(等価自由度)の値を表示するようにしました.

検定・推定の学習や検算で、Welchの検定の等価自由度の値を確認できます.

.....

3-7. デンドログラムの全体表示と貼り付け(階層的クラスター分析)

多変量解析の手法「階層的クラスター分析」において、これまで、デンドログラムが大きくなってしまった場 合スクロール表示をする必要がありました.今回の機能強化では、オプションでデンドログラムの詳細表示の全 体を1画面に表示したり、その結果をWordやExcelの1ページ内に貼り付け、印刷することが可能になりました. 初期表示でもデンドログラムで60項目までが表示できます.(以前は25項目)

分類するサンプルが多い場合に,デンドログラムは横に長くなります.そのような場合で も,デンドログラムを報告書に見やすく貼り付けられます.

<u>3-8.変数指定の使い勝手や Excel との互換性の向上(全手法)</u>

<u>3-8-1</u>. Excel のカンマ形式,指数形式のデータや xlsx ファイルの読み込みが可能に

Excel 上のカンマ形式と指数形式の数値を以前は文字データとして読み込んでいましたが、今回からは量的変数 として、そのまま読み込めるようになりました. さらに、Excel の xlsx ファイル (2004 年以降 Excel ブック形式) を直接読み込めるようになりました.

Excel のカンマ形式と指数形式の数値を、データ形式を変える必要なく、そのまま読む込むことができます.また、最新のExcelファイルを直接読み込め、便利です.

3-8-2. Shift キーによる変数の複数選択が可能に

各手法を起動後,解析に用いる変数を「変数の指定ダイアログ」で指定します.この変数の指定ダイアログ上で,shift キーで変数の複数選択ができるようになりました.

変数の数が多い時に、変数の複数指定がしやすくなります.

.....

	多变量调	開回の変数指定	
ヘ工業 (第四日) 和市場、工計会が会び会びます。 支配の減、1→1000(単一業業立の) サンパル会(1000) (サンパー会(1000) (サンパー	r. 解析71象	 ※ N1000間まで(本時可)、C1000間まで(本時可)、会計1000間まで 1(1) No. 実践名 実験 	
N 2 205597 4 4741972 4 4249400 N 5 7071307 0 77015688 0 77015688 0 77015688 0 9 3802688 0 9 3802688 0 9 3802688 0 9 3802688 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SER.	922/148	
		S1サンブル名	
WINH IN LOUIS TO AND A STREET			

4. 機能の製品別対応表と提供方法

お手持ちの各製品に対して、〇が付いている項目が追加されます.

製品名		機能アップ									
JUSE-StatWorks/V5	 解析 結果 の保 存 	 ② 層別 グラ フ 	 3 実験 計画 法 	 小ラ メー タ設 計 	 5 最尤 推定 	⑥ Wel ch 検定	 ⑦ 階層 的ク ラス ター 分析 	 ⑧ 変数 指定, 0ffice 互換性 			
総合編 総合編 with SEM 総合編 with MT	0	0	0	0	0	0	0	0			
QC 七つ道具編	0	0				0		0			
品質管理手法編	0	0	0			0		0			
品質工学編				0		0		0			
SEM 因果分析編						0		0			
対象者		全ユーザ									
提供方法			弊社	web サイトよ	にりダウンロ	ード※					
提供時期				2015 年	三12月末						

※自動アップデート機能を有効にしている場合は、自動的に通知と最新リビジョンへのアップデートを行います. ※2015 年 3 月にリリースされた R5.30 では、保守契約者向けに、直積法と累積法、CAID が提供されています.

5. その他・今後の開発予定

今回の機能アップでは、デフォルトの画面出力は変わりません.よって各企業で社内テキスト等を作っていた だいている場合でも、大きな変更は必要ありません.

さらに、今回の機能アップとは別に、今後はMTシステムやExcelFTA、ネットワーク版の管理者機能(起動ライ センス数が超過した時のアラーム機能),また StatWorks とは別システムの手法ナビゲーションツールが追加さ れる予定です.

また、ビッグデータ解析手法の搭載についても、現在、日科技連のデータサイエンスコース等に合わせ、調査・ 検討を行っております.(サポートベクターマシンやラスー回帰分析等)

6. おわりに

本資料では、StatWorks/V5のリビジョンアップ版(R5.40)での機能アップ点についてご紹介しました.

弊社は今後もユーザー様のご要望に応えるべく,StatWorks/V5の機能強化に取り組んでまいります.既に StatWorks/V5をお持ちの方は、引き続き、ご活用いただければ幸いです.また、以前のバージョンをお持ちの方 や、まだStatWorks/V5をお持ちでない方は、今回を機会にStatWorks/V5のご導入をご検討いただければ幸いで す. 本著作物は原著作者の許可を得て,株式会社日本科学技術研修所(以下弊社) が掲載しています.本著作物の著作権については,制作した原著作者に帰属 します.

原著作者および弊社の許可なく営利・非営利・イントラネットを問わず,本 著作物の複製・転用・販売等を禁止します.

所属および役職等は,公開当時のものです.

■公開資料ページ

弊社ウェブページで各種資料をご覧いただけます <u>http://www.i-juse.co.jp/statistics/jirei/</u>

■お問い合わせ先 (株)日科技研 数理事業部 パッケージサポート係 <u>http:/www.i-juse.co.jp/statistics/support/contact.html</u>