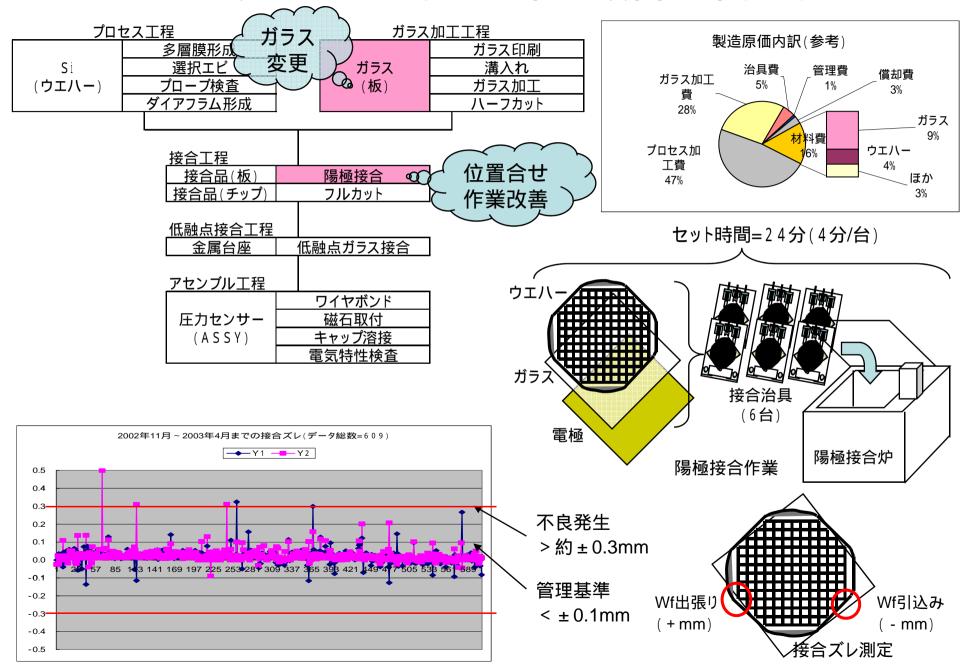
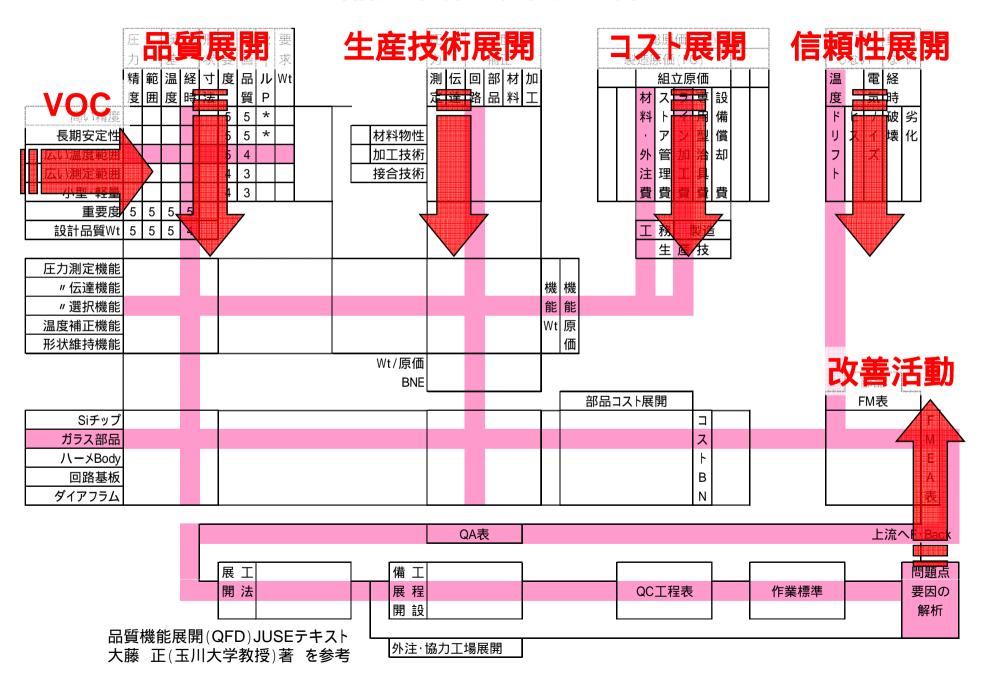

第14回JUSEパッケージ活用事例 シンポジウム

統計的手法を活用した生産技術改善-横河電機の圧力センサーの場合-

横河電機(株) 第3生產技術部 小川 昭

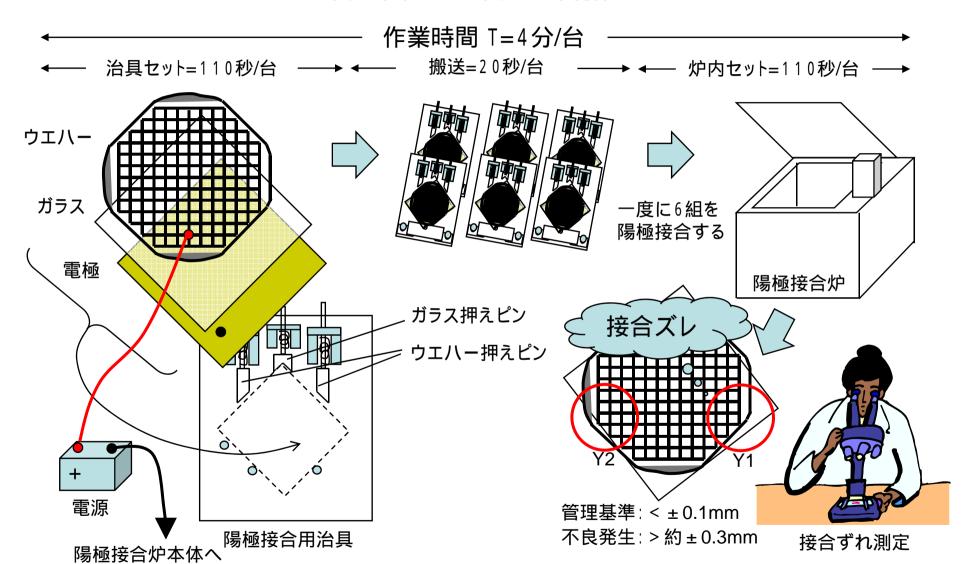

> 日時 2005年2月4日(金) 場所 (財)日科技連ビル

差圧伝送器と圧力センサー

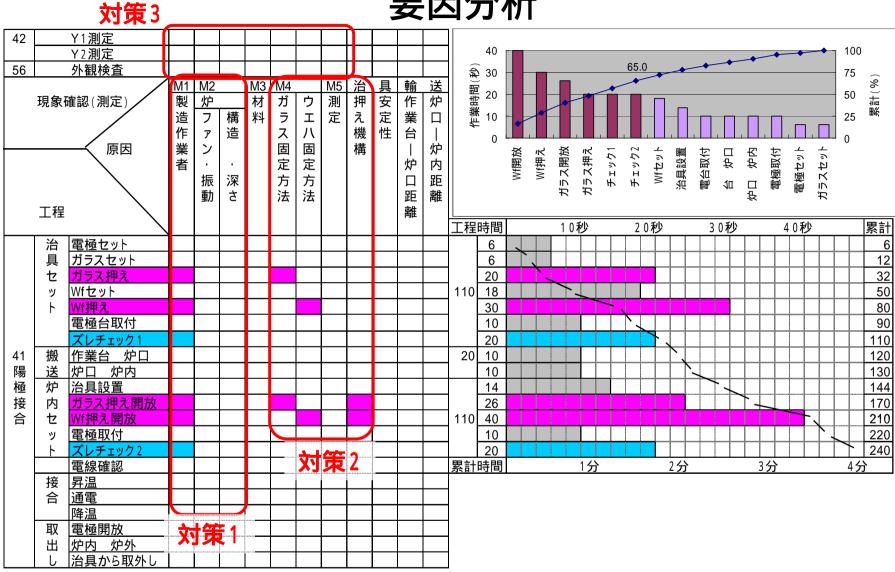


改善事例1

圧力センサー製造工程と改善の取組み



品質機能展開の活用


改善事例1 接合位置合せ作業の改善

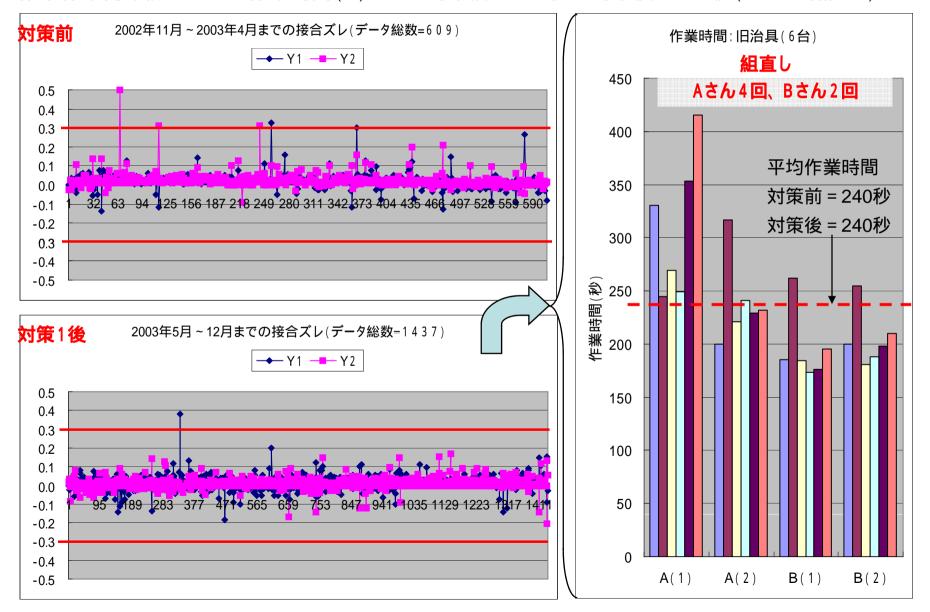
-管理図による管理を目指して-

接合ズレ(Y1、Y2)と作業時間(T)を改善する

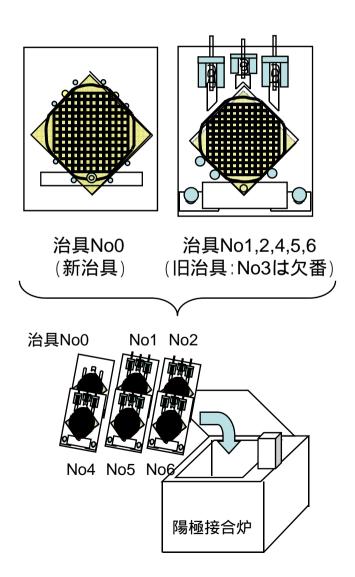
要因分析

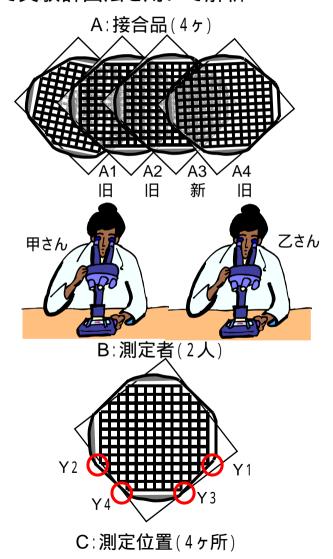
接合ズレの主原因は「作業者」「ファン・振動」「ガラス/ウエハ固定方法」「押え機構」 作業時間(T) = 2 4 0 秒のうち、「押え」「開放」「チェック」が65%を占める 測定精度についても検証する必要あり

対策1、2、3 を実施する


∐改善

対策1の結果


ファンベルト交換 作業標準再確認

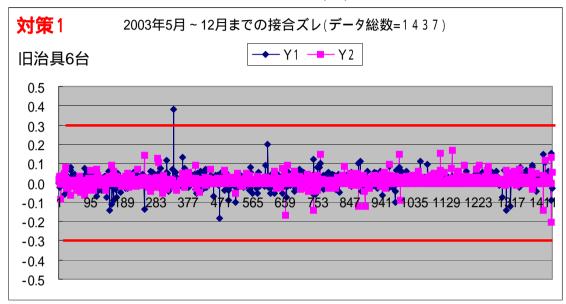

接合ズレ(Y1、Y2):0.3mm以上のズレ無〈なり歩留まり向上 作業時間(T) :対策前 = 240秒→対策後 = 240秒(組直し増加!)

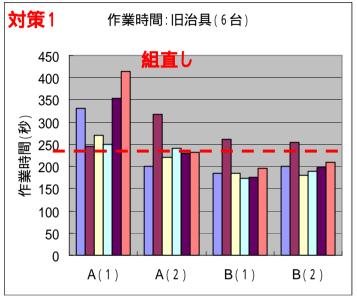
新治具1台作成し、旧治具5台とセットにして 接合作業を実施し、接合ズレと作業時間を確認

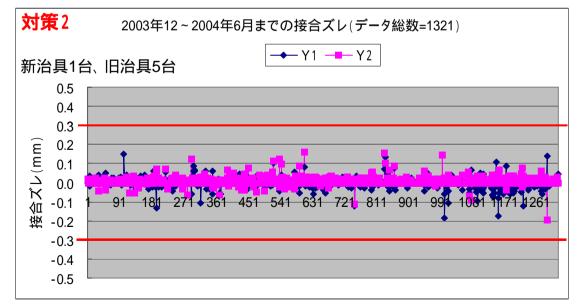
接合品、測定者、測定位置、測定繰返しについて実験計画法を用いて解析

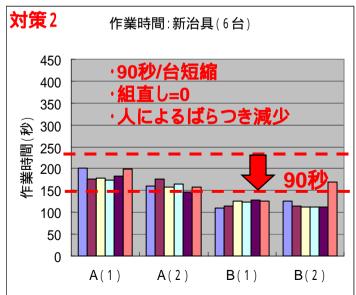
D:測定繰返し(3回)

対策2の結果

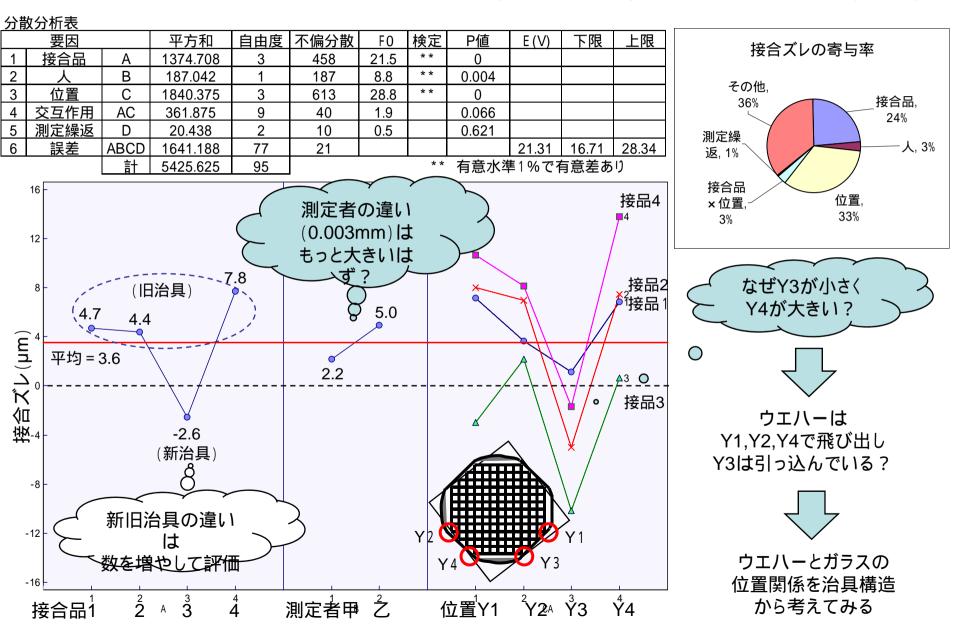

新治具1台作成 Y1、Y2、Tを確認



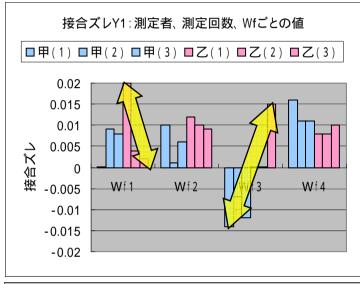

接合ズレ(Y1、Y2):不良品=0。管理図による管理に結びつける

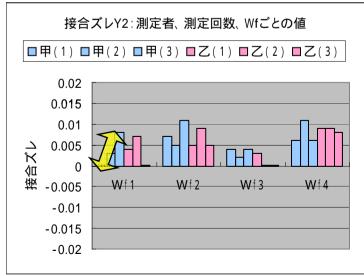

作業時間(T)

: 240秒/台→150秒/台(- 38%)、組直し=0、ばらつき減少

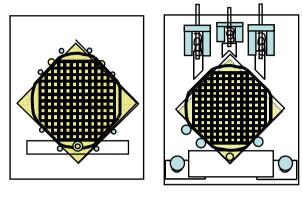


対策3の結果

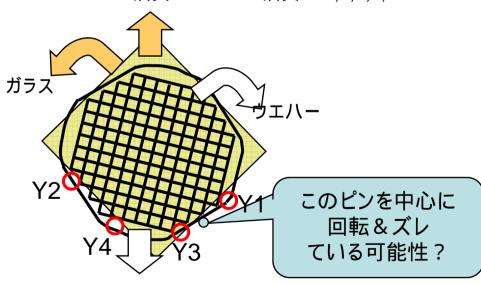

接合品、測定者、測定位置の影響が大きい(寄与率60%)がその他の影響も大(36%)



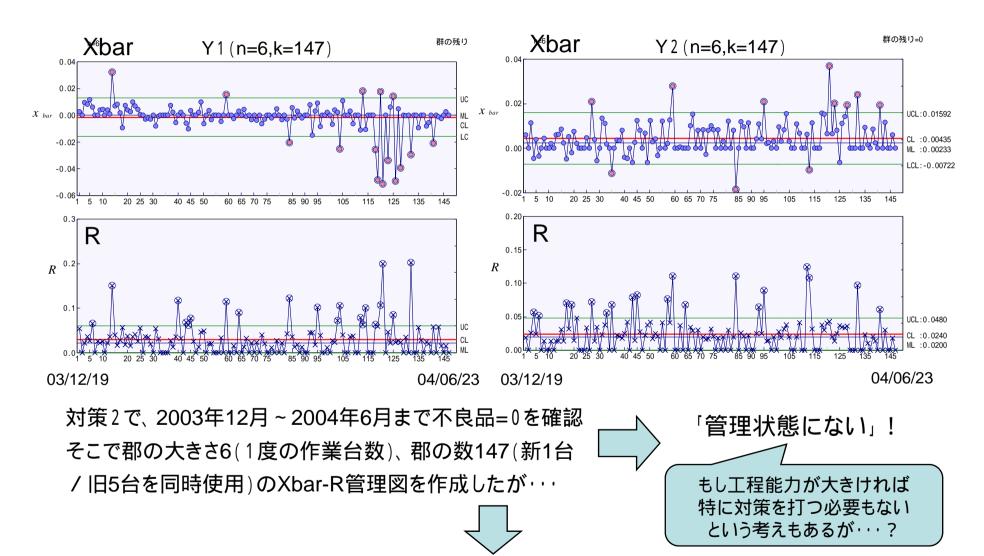
測定者についての考察


- ・測定者によるばらつきは0.03程度、
- ・同一作業者でも、0.01~0.02ばらつく

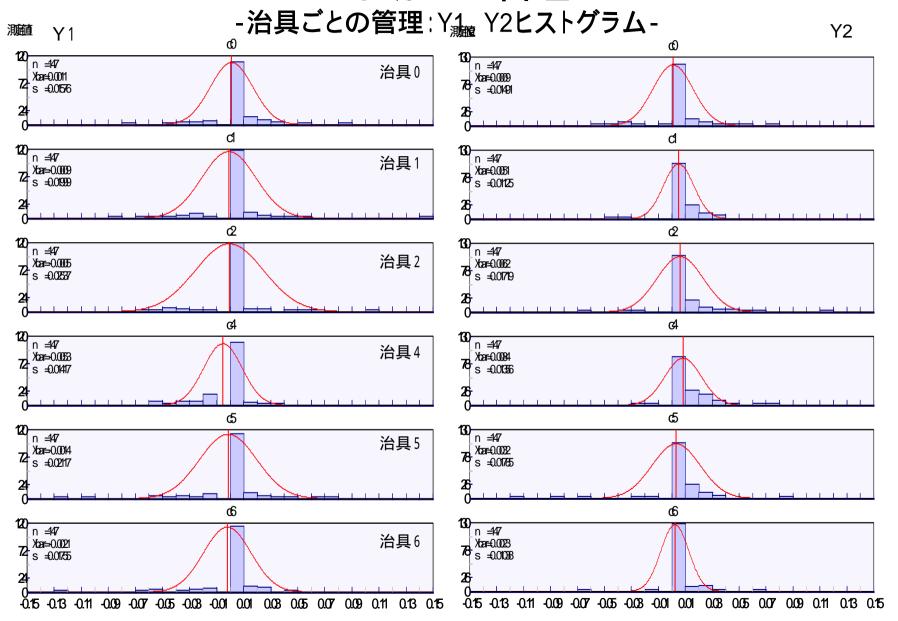
, 分散分析は 参考値と考える



測定位置についての考察

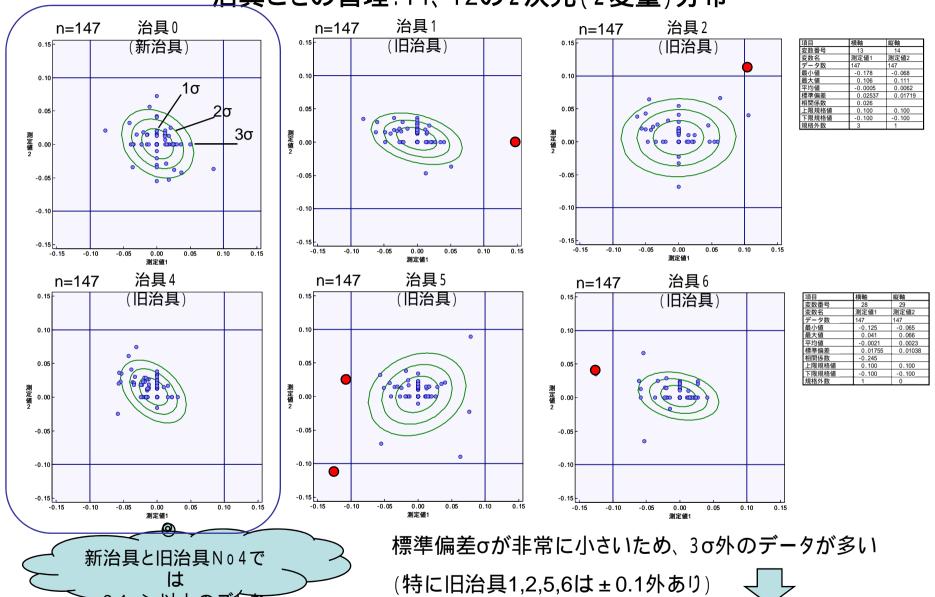

治具No0 治具No1,2,4,5,6

- ·新たな発見だが別途確認が必要 (新治具の構造では発生しに〈ハハズ)
- ·Y1とY2の対称性がないことを理解


これからの管理

-管理図による管理を目指して-

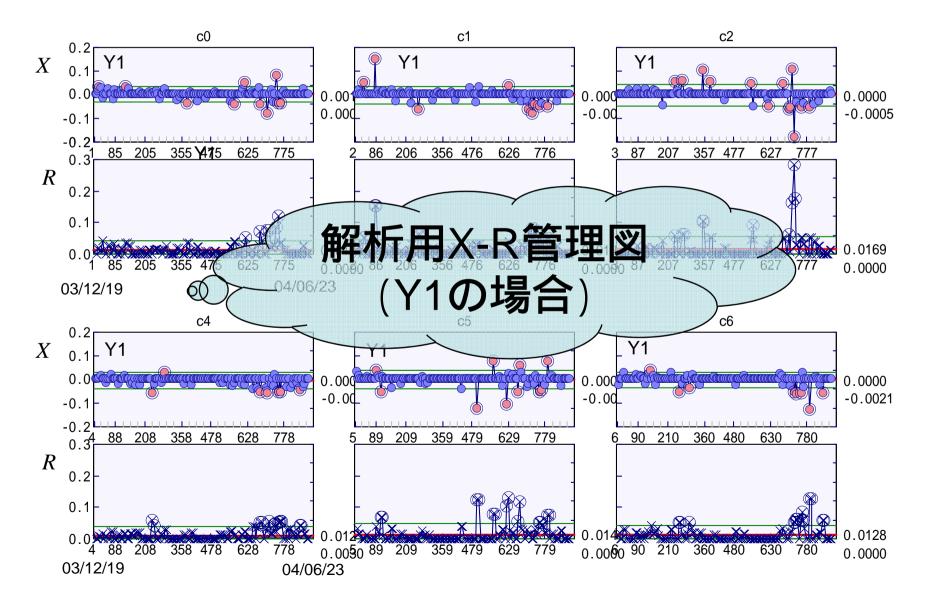
Xbar-R管理図ではな〈、X-R管理図を用いて、治具ごとの管理を行うべき(*まとめ参照) 新JIS:「解析用」管理図で使用する「標準値」を推定→その後「管理用」管理図で管理したい


これからの管理

「ずれ」は正規分布せず、計算された標準偏差σは非常に小さい(標準値には使えない)

これからの管理

-治具ごとの管理:Y1、Y2の2次元(2変量)分布-

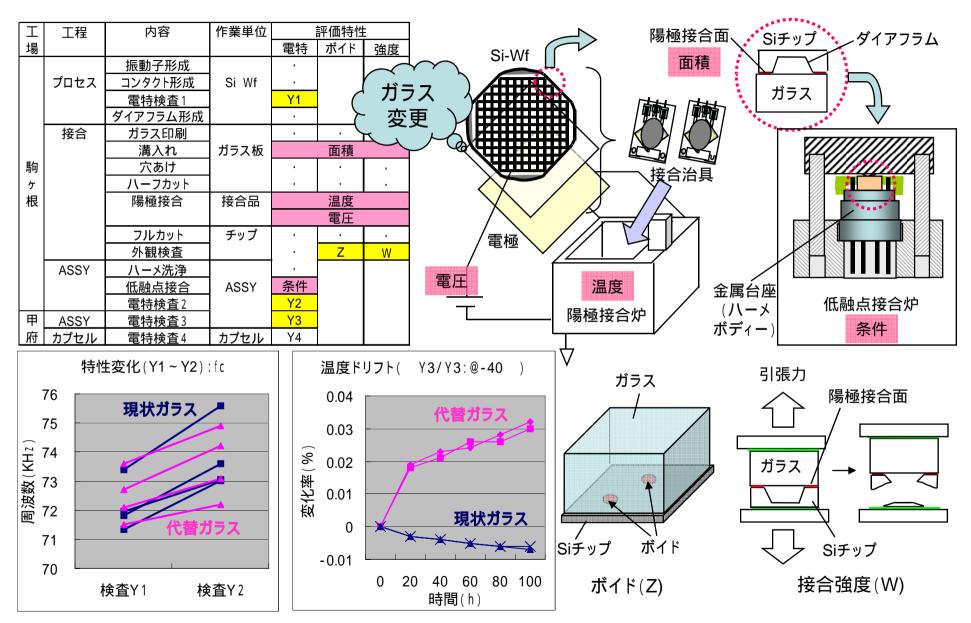


<u>±0.1mm以上のズレな</u> 治具ごとに「±3σ外の頻度」で発生する「接合ズレ」の大きさを推定し、Rの標準値を決定する

X-R管理図による管理(案)

対策1~3で得られた情報、及び「これからの管理」を参考に諸条件を整え解析用X-R管理図を作成し、管理用X-R管理図に発展させていきたい

群の残り=0


改善事例1のまとめ

- 1.接合ズレに対して対策をとり、不良発生をゼロに押えた
- 2.特に新治具を導入することで、±0.1mm以上の接合ズレがなくなり、1台あたり の位置合せ作業時間を240秒(4分)から150秒(2.5分)に短縮(-38%)した
- 3.接合ズレの測定では、物、人、測定位置の影響(寄与率)を把握できた
- 4.特に、ウエハーとガラスの「回転とズレ」の新たな知見が得られた
- 5.接合ズレの管理を管理図で行うため、管理用のX-R管理図の検討を始めた

謝辞

「これからの管理」においては、OfficeSQCの葛谷氏から 丁寧なご指導と貴重な助言を頂きました。御礼を申し上げます

改善事例2 ガラス変更と特性確認

特性変化(Y2 - Y1)、温度ドリフト(ΔY3/Y3)、ボイド(Z)、接合強度(W)を確認

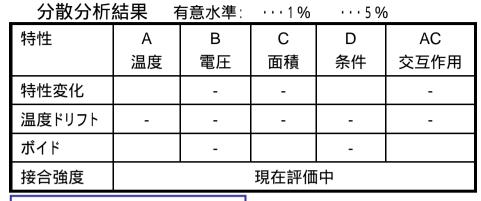
現状、目標、実験条件

現状 代替品は、 40 (100h)での温度ドリフトとボイド(外観検査)に問題あり(04年8月確認)

評価特性の現状把握(温度ドリフトは絶対値で判断する)

特性	名称	従来品	代替品	判定
Y2 Y1	特性変化(fc差)	< ± 2KHz	< ± 2KHz	
ΔΥ3/Υ3	温度ドリフト(-40)	- 0.01%	+ 0.03%	
Z	ボイド(外観検査)	レベル3	レベル5	×
W	接合強度	> 60N	> 60N	

ボイドレベルと検査歩留(予想)

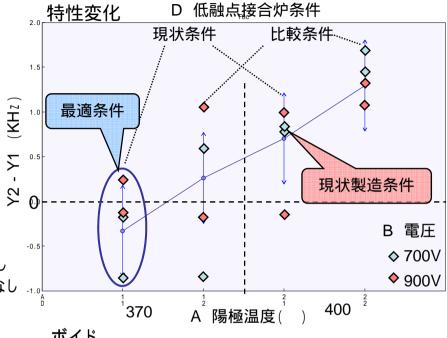

レベル	> 0.3	> 0.1	< 0.1	歩留
1	0	0	0	100%
2	0	2	不問	100%
3	0	4	不問	100%
4	1 ~ 3	不問	不問	95%
5	> 4	不問	不問	90%

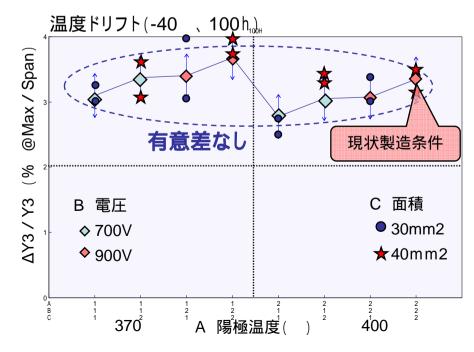
目標 実験計画法により特性に影響を与える<u>工程要因を絞込む</u>。ガラス材料と実験納期に制限があるため、工程要因と水準は下記のようにする(後日要因と水準を増やした追加実験を行い<u>最適条件を決定</u>し目標達成の可能性を判断する) 実験条件(青が現状の製造条件)

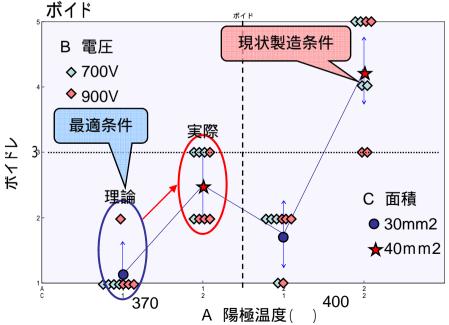
特性	名称	現状	目標	重要度	難易度
Y2 Y1	特性変化	< ± 2KHz	< ± 2KHz		
ΔΥ3/Υ3	温度ドリフト	+ 0.03%	+ 0.02%		
Z	ボイド	レベル5	レベル3		
W	接合強度	> 60N	> 60N		_

因子	単位	水準1	水準2
A温度		370	400
B電圧	V	700	900
C面積	mm2	30	40
D条件			
炉	号機	5	10
最大温度		470	450
ガ転移時間	h	3	1
Total時間	h	10	8

要因分析




最適条件(理論 → 実際)


- A 温度 370
- B 電圧 700V
- C 面積 30mm2 → 40mm2
- D 条件 現状条件

最適条件(実際)

- ・面積変更は現実不可能
- ・40mm2でもボイド目標3をクリアし 特性変化、温度ドリフトとも影響なし ...。

要因分析の結果

特性に影響を与える要因を、<u>陽極接合のA温度、C面積、D低融点接合の条件</u>、に絞込んだ特性変化とボイドは目標を達成するが、温度ドリフトはこの要因だけでは目標達成が困難

実験要因	単位	現状条件	改善条件
A温度		400	370
B電圧	V	900	700
C面積	mm2	40	←
D条件		*	←

名称	要因	現状	目標	改善条件	判定
特性変化	A, D	< ± 2KHz	< ± 2KHz	< ± 1KHz	
温度ドリフト	-	± 0.03%	± 0.02%	± 0.03%	
ボイド	A, C, AC	レベル5	レベル3	レベル3	
接合強度	評価中	> 60N	> 60N	評価中	-

考察

温度ドリフトの改善は、A~D以外の要因、または今回の水準範囲外の影響を考慮する必要あり要因として、接合時間、ガラスの厚さ、加工形状、物性など、水準範囲としてより低温の温度範囲

- (1)より短い接合時間、より低い接合温度でよい特性が得られる可能性あり
- (2)ガラス厚さ、加工形状、面積の最適化で温度ドリフトの改善可能性あり(技術部データより) ・・・工程設計・関連部品の変更、接合強度、加工時間の評価が必要
- (3)ガラス物性の改善は大きな効果が期待できる・・・ガラスメーカーの協力が必須 (1)については今後の取組みに反映させる。(2)についてはコストダウンを目指した改善活動の 範囲を越えている。将来の新製品開発時のボトルネックエンジニアリング(BNE)として取組むことが 適当と考える(3)はガラスメーカーに協力をお願いしている

今後の取組み

考察を踏まえ、QCD改善のさらなる取組み(加工洗浄、陽極接合、チップ破損の改善)とリンクさせ、変更可能な工程要因(温度、時間等)の最適水準を探索するためL16実験を実施中

ļ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
	а	b	ab	С	ac	bc	abc	d	ad	bd	abd	cd	acd	bcd	abcd	┆ (A)W温度 (A)WAX (B)電流
Α	W	洗					W	洗		洗				R		¦ (B)電極
加工洗浄	Α	浄					温	浄		浄				0		
改善	Χ						度									
В	ガ	温		電	時		電	温		温			電	R		(7) $\frac{6}{1}$ (13)
陽極接合	ラ	度		圧	間		極	度		度			流	0	L J	
改善	ス															3/\9
C	印						電				`	温原	送は	(4 7)	〈準	7 211 - 3
チップ破損	刷						極			\downarrow	-	低温	見 側	に打	大大	
改善										($\langle \rangle$		<u>~</u>			(2) (8)
Νo	1	2	3	4	5	6	7	8	9	¢ O	11	12	13	14	15	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	(人)洪洛
2	1	1	1	1	1	1	11	2	2	2	2	2	2	2	2	(A)洗浄
3	1	1	1	2	2	2	2	1	1	1	1	2	2	2	2	(B)温度
4	1	1	1	2	2	2	2	2	2	2	2	1	1	1	1	L
5	1	2	2	1	1	2	2	1	1	2	2	1	1	2	2	
6	1	2	2	1	1	2	2	2	2	1	1	2	2	1	1	¦ (B)電圧
7	1	2	2	2	2	1	1	1	1	2	2	2	2	1	1	11 (15)
8	1	2	2	2	2	1	1	2	2	1	1	1	1	2	2	(4)(15)
9	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	
10	2	1	2	1	2	1	2	2	1	2	1	2	1	2	1	(A)リムーバ&テープ洗浄
11 12	2	1	2	2	1	2	1	1	2	1	2	2	1	2	1	
	2	7	2	2	1	2	1	2	1	2	1	1	2	1	2	(B)時間 (B)リムーバ&テープ洗浄
13 14	2	2	1	1	2	2	1	7	2	2	1	1	2	2	7	
15	2	2	1	2	2	2	1	2	2	2	2	2	1	1	2	(5)
16	2	2	1	2	1	1	2	2	1 .		<u> </u>		سلسها	<u> </u>	\prec	
10		2	I			L ₀	-	Ó	\vdash	F	計計	11 1	2 7K	淮		
時間は2水準																
短時間を評価																

改善事例2のまとめ

- 1.代替ガラスを採用する場合、特性変化(Y2 Y1)とボイドを改善するためには 陽極接合温度を低温化 $(400 \rightarrow 370)$ することが必要であることが判明 しかし、温度ドリフトは今回取上げた工程要因、水準範囲では改善不可能
- 2.圧力センサーQCDの更なる改善をL16実験計画法にて計画している この中で、温度ドリフト含む各種特性について有意な要因の最適な水準 を探索し、代替ガラスの評価を決定させる

謝辞

「要因分析」と「今後の取組み」においては、元埼玉工業大学の安部教授より 丁寧なご指導と貴重な助言を頂きました。御礼を申し上げます

掲載されている著作物の著作権については、制作した当事者に帰属します.

著作者の許可なく営利・非営利・イントラネットを問わず、本著作物の複製・転用・販売等を禁止します.

所属および役職等は、公開当時のものです.

■公開資料ページ

弊社ウェブページで各種資料をご覧いただけます http://www.i-juse.co.jp/statistics/jirei/

■お問い合わせ先

(株)日科技研 数理事業部 パッケージサポート係 http:/www.i-juse.co.jp/statistics/support/contact.html