StatWorks/V5による直積法の解析事例

※この資料は、StatWorks/V5活用ガイドブックから一部を抜き出し、編集・加工したものです。本資料の内容は予告なく変更されるこ とがあります.

ある精密機器メーカーC社では、薄膜金属材料 Zの表面加工を行っています。今回は表面加工を開始してから5分 後の表面の「加工深さ」を特性値として、それをできるだけ小さくしたいと考えています. (できれば 90[μm]以下 にしたい). 制御因子は下記のAからHまでの 8 因子で,これをL18(2×3⁷)にわりつけて実験を行いたいと考え ています.

しかし場合によっては、劣化したエッチング液(旧)を使用することがあり、エッチング液の新旧は選べない状況 となっています.

因子種類	因子記号	因子名	第1水準	第2水準	第3水準
内側因子	А	アルミ配線工程有無	有	無	—
(制御因子)	В	薬剤 B 割合	10%	15%	20%
	С	薬剤 C 割合	5%	8%	10%
	D	レジストベーク温度	100度	120 度	150 度
	Е	エッチング液温度	20 度	25 度	30 度
	F	薬剤 F 濃度	20%	30%	40%
	G	薬剤 G 濃度	10%	20%	30%
	Н	シート抵抗値	100Ω	125Ω	140Ω
外側因子	Ι	エッチング液の新旧	エッチング液	エッチング液	—
(誤差因子)			(新)	(旧)	

	1	2	3	4	5	6	7	8	Ι	
No	А	В	С	D	Е	\mathbf{F}	G	Н	エッチング液(新)	エッチング液(旧)
1	1	1	1	1	1	1	1	1	170.8	217.9
2	1	1	2	2	2	2	2	2	130.2	196.6
3	1	1	3	3	3	3	3	3	129.5	137.3
4	1	2	1	1	2	2	3	3	100.0	159.9
5	1	2	2	2	3	3	1	1	99.3	118.2
6	1	2	3	3	1	1	2	2	179.5	293.4
7	1	3	1	2	1	3	2	3	168.8	243.5
8	1	3	2	3	2	1	3	1	123.0	181.8
9	1	3	3	1	3	2	1	2	94.2	107.0
10	2	1	1	3	3	2	2	1	58.0	66.0
11	2	1	2	1	1	3	3	2	166.3	237.1
12	2	1	3	2	2	1	1	3	99.3	175.0
13	2	2	1	2	3	1	3	2	71.4	77.3
14	2	2	2	3	1	2	1	3	165.9	270.6
15	2	2	3	1	2	3	2	1	109.7	170.6
16	2	3	1	3	2	3	1	2	70.0	162.4
17	2	3	2	1	3	1	2	3	60.9	66.9
18	2	3	3	2	1	2	3	1	163.6	264.9

実験データ

以上の情報をもとに、エッチング液の新旧の影響を受けにくく、加工深さを小さくするような最適条件を求めます.

参考文献:棟近雅彦監修,山田秀,立林和夫,吉野睦著(2012):「パラメータ設計・応答曲面法・ロバスト最適化入門」, 日科技連出版社 ※説明用にデータを加工しています.

本事例のサンプルデータを読み 込みます.

1列目(サンプル名)には内側因 子のわりつけ情報,2~9列目(質 的変数)には内側因子の水準,10 列目と11列目(量的変数)には, エッチング液(新),エッチング 液(旧)それぞれを使った時の加 工深さのデータが入っています.

	JUSE Package Software - [1:薄膜金属材料の表面加工深さ(直積法) [M91_0101_薄膜金属材料の表面加工深さ(直積法).SW5]]												
ワークシー	-ト 手法選択	そ 解析	装飾										
び 服 入力	保存 印刷 出力	□aコピー → ■點付 よ切取 クリップボード	 変数一括 変数属性 量的変積 変数情 		新入・21、20 削除・01、10 注換・21、02 編集	33	2↓ 範囲 角 A↓ 欠測 角 M→ 検索 d	¥析対象デー、 ¥析対象 ▲ ジャンフ° データ		□□□1 ⁰ ティ 2000 ティ	 図 団 全 団 ゴ ゴ ジ マ ジ ジ)へル)製品 りトピ へル	プ - 品 - ック プ
	• 51	● C 2	• C3	• C 4	• 05	• C6	• C7	• C8	• • •	• N10	• N11	Ī.	1
	内側わりつけ	刀に配線	藻剤B割合	藻剤(割合	レジストペーク温度	エッチング液温度	薬剤F濃度	薬剤G濃度	シト抵抗値	エッチング液(新)	エッチング 液(日)	1	
•1	A	有	10%	5%	100度	20度	20%	10%	100Ω	170.8	217.9	Ĵ.	
•2	В	有	10%	8%	120度	25度	30%	20%	125Ω	130.2	196.6	j i	
•3	C	有	10%	10%	150度	30度	40%	30%	140Ω	129.5	137.3	J .	
• 4	D	有	15%	5%	100度	25度	30%	30%	140 Ω	100.0	159.9	J	
•5	E	有	15%	8%	120度	30度	40%	10%	100 \Q	99.3	118.2	1	
•6	F	有	15%	10%	150度	20度	20%	20%	125Ω	179.5	293.4	F.	
•7	G	有	20%	5%	120度	20度	40%	20%	140 \Q	168.8	243.5	1	
•8	H	有	20%	8%	150度	25度	20%	30%	100 \Q	123.0	181.8	1	
•9		有	20%	10%	100度	30度	30%	10%	125 \Q	94.2	107.0	I.	
• 10		無	10%	5%	150度	30度	30%	20%	100 \Q	58.0	66.0	I.	
•11		無	10%	8%	100度	20度	40%	30%	125 \Q	166.3	237.1		
• 12		無	10%	10%	120度	25度	20%	10%	140 Ω	99.3	175.0	μŢ	
•13		無	15%	5%	120度	30度	20%	30%	125 \Q	71.4	77.3)	
•14		無	15%	8%	150度	20度	30%	10%	140 Ω	165.9	270.6	j]	
• 15		無	15%	10%	100度	25度	40%	20%	100 Ω	109.7	170.6	j]	
• 16		無	20%	5%	150度	25度	40%	10%	125 Ω	70.0	162.4	F.	
•17		無	20%	8%	100度	30度	20%	20%	140Ω	60.9	66.9	μŢ	
•18		無	20%	10%	120度	20度	30%	30%	100 \Q	163.6	264.9	- L	<
• 11 4 •	▶ 漢朕金屬材料	目の表面加工業	₹ð((<						>	
V7°1													

手順2

メニューから「手法選択」-「実験計画法」-「直積法」を選択します.

手順3

ここでは予めワークシート上にデータを入力しているため、
 「ワークシート上のデータを分析」をクリックします。
 一方、もし Excel 上等にデータがある場合は「外部データを分析」
 を選択します。

直積法

ワークシート上のデータを分析 まずデータ・実験条件が入力されたワークシート上の変数を 指定します.

外部データを分析

キャンセル ヘルプ

まず計画に関する各種設定を行います. 実験計画表が出力されますので,その実験計画表上で データの入力を行って下さい.

手順4

「変数の指定」ダイアログで、特性値に「エッチング液(新)」と「エッチング液(旧)」、実験条件に「アルミ配線」から「シート抵抗値」までの内側 因子 7 つ、そして、わりつけとして既にわりつけ情報が入力されている 「内側わりつけ」を指定して次に進みます.

-特性値				
	全 N:	1~1000	18	
>	種別	No.	変数名	変換
選択	N	10	エッチンクド夜(新)	N10
実験条件				
XXXX11	全 C:I	63個まで	(省略可)	
>	種別	No.	変数名	変換
選択	C	2	アルミ配線	C2
	C	3	薬剤B割合	C3
	C	4	薬剤C割合	C4
	C	5	レジストベーク温度	C5
	C	6	エッチング液温度	C6
わりつけ				
	全 S:	21回まで	(省略可)	
>	種別	No.	変数名	変換
遥択	S	1	内側わりつけ	S1

「因子数・水準数の指定」ダイアログ では、まず内側実験回数が18で、外側 実験回数が2であることを確認します. また、内側因子の因子名や水準に間違いが ないかどうかを確認します.

さらに外側因子の因子数を「1」,水準 数を「2」にして,因子名を「エッチング液 新旧」とします.

	因子数・水準数の指定												
- 内側因]子 因子数: 8	~	内側実験回数:	t:18 外側実験回数:2 外側因子 因子数:1 マ									
No 1 2 3 4 5 6 7 8	記号 A B C D E F G H	因子名 7ル酒記線 薬剤10割合 薬剤10割合 レジネハベ・ウ温度 レジネハベ・ウ温度 レチング液温度 薬剤10濃度 薬剤10濃度 薬剤10濃度 薬剤10濃度 薬剤10濃度 薬剤10濃度 シート抵抗値	水準数 2 3 3 3 3 3 3 3 3 3 3 3 3	No 記号 因子名 水準数 1 I I Jッヂング 液の新E 2									
			<戻る										

手順6

「計画種類の指定」ダイアログでは、内側計画が 直交配列表、外側計画が要因配置計画(繰り返し:なし) になっていることを確認して次へ進みます.

手順7

内側計画に直交配列表を用いているため、次に内側因子のわりつけ画面が表示されます.

L18(2¹×3⁷)の直交配列表が選択されていますが, 正しくわりつけがされていることを確認した上で,次へ 進みます.

わりつけ(内側因]子)		
直交配列表: L18(2^1×3^7) 🗸 🗸			
わりつけを因子記号で指定して下さい。 (主効果の例:A, 交互作用の例:AB, 誤差:(空白))			
列番 わりつけ	記号	水準数	因子名
2 P	A	2	アルミ配線
3 0	в	3	薬剤B割合
4 0	С	3	薬剤C割合
5 F	D	3	レシ『ストヘ『一ク温度
6 F	E	3	エッチンク液温度
7 G	F	3	薬剤F濃度
8 H	G	3	薬剤G濃度
	н	3	シート抵抗値
<戻る 次へ>	<u>۴</u> 4	シセル	ヘルプ

「実験データ」タブに、各実験の条件と、特性値が表示 されます.

次に,各因子の効果を視覚的に確認します. 画面上部の「データプロット」タブをクリックします.

	JUSE Package Software - [実験ナータ]														
	ワークジ	シート	手法	選択	解析	装飾	ħ								- = x
·	🧉 保存	F - 10	0. 0.		2↓	-	0 20 (-		_			<u>ک</u>	1	🔞 ヘルプ・	
1	🖶 ED 16	I - 1	6.4 60.		Z	为年初下了了	· /· 1/	1	0	<u> 12</u> 13		*.0		6 製品 -	
	Do TP-	[n 🖓 🗸		No.	変数再	指定	7*-5	貼付デ	"-90リア 変数登	绿 オフ° ション 計画	,00	- 3100 E	のトピック	
	出力		表示		у <u>-</u> ト	解析	支援			解析提	作	2,0	ウィンドウ	ヘルプ	
	-	<h< th=""><th>(二) 報告/</th><th>いたま</th><th>16</th><th>12/16</th><th>5</th><th>±#</th><th></th><th></th><th></th><th>_</th><th>📃 雅謨金屬材</th><th>料の表面加工業</th><th>「お道狭法</th></h<>	(二) 報告/	いたま	16	12/16	5	±#				_	📃 雅謨金屬材	料の表面加工業	「お道狭法
	, 2 00	-7	73 BA	10111111111	n	EVE IN	,	12					白田 雅耕金	屬材料の表面加	正深さ直
実験が う デーリア お計量 因子名・水準名 白唇 実験テータ											後データ				
	内側目	tim : Li	18(2°1×	817)	外側計	新 : 東内	的震計	itti				1	P 📬	実験71~2	
	1 1110		1		1				Lites	111	19	- 1		7°-27°D/h	
	初級	1	2	3	4	5	6	7	8	11	12			◎ 統計堂	
	No	A:743	- B:遊話	C:202	D:1/9*	E:1-7	F:道道	G:2022	H:9-h					◎ 因子名·水	準名
	1	有	10%	5%	100度	20度	20%	10%	100 \Q	170.8	217.9		÷	分散分析表	
	2	有	10%	8%	120度	25度	30%	20%	125 \	130.2	196.6			- 9 万武万何き 推定値	e
	3	有	10%	10%	150度	30度	40%	30%	140Ω	129.5	137.3			- ● 推定値710:	1
	4	有	15%	5%	100度	25度	30%	30%	140Ω	100.0	159.9			● 推定値	
	5	有	15%	8%	120度	30度	40%	10%	100Ω	99.3	118.2			差の推定	
	6	有	15%	10%	150度	20度	20%	20%	125Ω	179.5	293.4		÷	残差	
	7	有	20%	5%	120度	20度	40%	20%	140 Ω	168.8	243.5			- 9 残左一氏の - 9 万根確定11	t Mat
	8	有	20%	8%	150度	25度	20%	30%	100 Ω	123.0	181.8			•	
	9	有	20%	10%	100度	30)度	30%	10%	125 \Q	94.2	107.0				
	10	羔	10%	5%	150度	30度	30%	20%	10052	58.0	66.U				
	12	羔	10%	0% 10W	100度	201夏	40%	3U%	1/2052	100.3	237.1				
	12	帝	169	TU/6	1201度	20)夏	20/6	20%	1950		77.2				
	14	毎	15%	8%	150度	20度	30%	10%	1400	165.9	270.6				
	15	無	15%	10%	100度	25度	40%	20%	1000	109.7	170.6				
	16	無	20%	5%	150度	25度	40%	10%	125 \	70.0	162.4				
	17	無	20%	8%	100度	30度	20%	20%	140Ω	60.9	66.9		<		>
	18	魚	20%	10%	120度	20度	30%	30%	100	163.6	264.9				
	17° 1											-			

手順9

「データプロット」タブでは、各因子の主効果や 交互作用を確認します. 例えば因子 E と I の要因効果図からは、E×I の線が平行でなく、E×I の交互作用が大きそ うに見えます.

手順10

「因子名・水準名」タブでは、特性値の名称や、 因子名・水準名を変更することができます.

「特性名」を「加工深さ」,外側因子I(エッチング液の 新旧)の第1水準の名称を「新」,第2水準の名称を 「旧」に変更しておきます.

JUSE Package Software - [因子名・水準名] - ロ											
ワークシ	シート 手法	羅択	解析	装飾						_ = = :	×
 保存 申印場 申回 正 出力 	▼ * ■ * ■ * ■ * ■ *			解析アト・ハ・イス 変数再指定 解析支援	40 22 特性名 因子: 貼付け 貼付	 名 名称 け 自動付与 解析操作 	二〇一元に戻す	 □ □<th> ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ </th><th>1 - - - -</th><th></th>	 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 	1 - - - -	
実験テ	·小 分散:	分析表	推	定值 残差	1					関連金属材料の表面加工深的直接 のためく見たりのも見たこです。	2
実験だい	-ծ ÷°-ծ⊐°nk	統計量	E E	7-2・水准之					<u></u>	四 滞映室漏行符の表面加工業での 	
No 1	内酸計画:118(2*1×2*7) 外間計画:項回配量計画 ま 東回配量計画 ま 118(2*1×2*7) 外間計画:項回配量計画 ま 東海トッ No 特性名 ままわっ 1 カロニ深さ 日子名・米客名 日 子名の(4)本										
No		水準数	記号	因子名	第1水準	第2水準	第3;	水準		😑 🚾 推定値	
1	内側因子	2	A	アル:配線	有	無				● 推定値7119ト	
2		3	В	薬剤B割合	10%	15%	20%				
3		3	С	薬剤(割合	5%	8%	10%			□ □	
4		3	D	レジストベーグ量	100度	120度	150,	贲		● ● 務差一覧表	
5		3	E	Iッチング 液温胆	20度	25度	30度			◎ 正規確率フ13ット	
6		3	F	薬剤F濃度	20%	30%	40%				
7		3	G	薬剤6濃度	10%	20%	30%				
8		3	Н	シート抵抗値	100 \Q	125Ω	140	Ω			
9	外側因子	2	I	Iッチンク『液の業	新	IB			<		>
_											
1 - 2 -											

手順11

画面上部の「分散分析表」タブをクリックすると, 分散分析表の画面が表示されます.ここでは主効果や 交互作用のプーリングを行うことができます.

内側因子と外側因子の交互作用は、分散比が 2.0 以下 のA×I, B×I, C×I, F×I, G×I, H×Iをプーリング します. プーリングの方法は、プーリングしたい行を クリックし水色に反転した上で、「プーリング」ボタ ンを押します.

次に内側因子の主効果の B, F, G, H をプーリング します.

No	要因	平方和	自由度	分散	分散比	検定	P値(上側)
1	A:アル酒?線	4334.028	1	4334.028	22.636	*	0.041
2	B:薬剤B割合	521.602	2	260.801	1.362		0.423
3	C:薬剤C割合	5626.569	2	2813.284	14.693		0.064
4	D:レジストベーク	1483.887	2	741.944	3.875		0.205
5	E:Iッチンク「液汁	89389.344	2	44694.672	233.432	**	0.004
6	F:薬剤F濃度	387.944	2	193.972	1.013		0.497
7	G:薬剤G濃度	234.681	2	117.340	0.613		0.620
8	H:シート抵抗値	81.496	2	40.748	0.213		0.825
9	1次誤差	382.936	2	191.468	1.543		0.393
10	I:Iッチング液0	27005.444	1	27005.444	217.675	**	0.005
11	AI	118.810	1	118.810	0.958		0.431
12	BI	363.162	2	181.581	1.464		0.406
13	CI	297.982	2	148.991	1.201		0.454
14	DI	709.057	2	354.529	2.858		0.259
15	EI	9466.507	2	4733.254	38.152	*	0.026
16	FI	88.274	2	44.137	0.356		0.738
17	GI	92.624	2	46.312	0.373		0.728
18	HI	188.162	2	94.081	0.758		0.569
19	2次誤差	248.127	2	124.063			
20	計	141020.636	35				

さらに1次誤差の分散比も2.0以下のためプーリング を行います.

No	要因	平方和	自由度	分散	分散比	検定	P値(上側)
1	A:アル酒?線	4334.028	1	4334.028	26.942	**	0.000
2	C:薬剤C割合	5626.569	2	2813.284	17.488	**	0.001
3	D:レジストベーク	1483.887	2	741.944	4.612	*	0.038
4	E:Iッヂンク 液況	89389.344	2	44694.672	277.838	**	0.000
5	1次誤差	1608.658	10	160.866	1.497		0.244
6	I:Iッチング液0	27005.444	1	27005.444	251.278	**	0.000
7	DI	709.057	2	354.529	3.299		0.069
8	EI	9466.507	2	4733.254	44.042	**	0.000
9	2次誤差	1397.141	13	107.472			
10	計	141020.636	35				

手順13

プーリングされていない主効果や交互作用の分散比は 全て 2.0 以上になっています. これでプーリングは完了です.

No	要因	平方和	自由度	分散	分散比	検定	P値(上側)
1	A:アルミ配線	4334.028	1	4334.028	33.163	**	0.000
2	C:薬剤C割合	5626.569	2	2813.284	21.527	**	0.000
3	D:レジストベーク	1483.887	2	741.944	5.677	**	0.010
4	E:エッチンク「液汁	89389.344	2	44694.672	341.998	**	0.000
5	I:Iッヂンク 液O	27005.444	1	27005.444	206.642	**	0.000
6	DI	709.057	2	354.529	2.713		0.088
7	EI	9466.507	2	4733.254	36.218	**	0.000
8	誤差	3005.799	23	130.687			
9	計	141020.636	35				

JUSE Package Software - [分散分析表]

ーリングの絶対的な基準は存在しませんが,目安として,分散比が 2.0 以下の因子をプーリングする ことが多いようです.

手法選択

手順14

分散分析表より,外側因子 I (エッチング 液の新旧) と内側 因子 E(エッチング 液温度)との交互作用が有意であるため, この組み合わせで推定を行います.

- 推定に用いる主効果と交互作用「E」, 「I」, 「EI」の 3つの行をクリックし水色に反転させた状態にして, 「推定値」タブへ移ります.
- 解析 装飾 🔞 ヘルプ・ n 🖾 🗖 🕅 解析疗ドボイス 変数再指定 ア⁰ーリング アーリング 自動 寄与率 オア⁵ 93ン 解除 アーリング 電中明・ 協コピー・ 出力 東二 ⊖i All 1000 1000 ソート 解析支援 解析操作 実験データ 分散分析表 推定値 残差 分散分析表 対数学時表 No
 夏田
 平方和
 自由度 分数
 分数比
 検定 P値
 (上冊)
 0
 1 475-73478
 4334-028
 1 4334-028
 2 (358,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 (2015,000
 5 [検定結果] **:1%有意 *:5%有意 空白:有意差なし

手順15

「推定値プロット」画面では、外側因子 I(エッチング液の新旧)の水準による ばらつきの違いを見るために,横軸を1に設定します.

「推定値プロット」画面上部の「オプション」ボタンを押し、横軸因子を「I」のみ に設定した上で、「OK」ボタンを押します.

- 🗆 ×

「推定値プロット」画面で, E(エッチング液温度)の各水準に よって,特性値である加工深さにどれぐらい違いが 出るかどうか(ばらつきが大きいかどうか)が分かり ます.

E (エッチング液温度) が E3 (30 度) の時, 加工深さに大きな違いはなく, ばらつきが小さくなり ます.

手順17

次に,内側因子の最適水準を求めます.「分散分析表」 タブに戻り,有意となった因子「A」,「C」,「D」を 選んだ状態で「推定値」タブをクリックします.

「推定値プロット」タブの画面上部の「表示切替」ボタン を押して,各因子の水準を横軸としたグラフを表示し, 加工深さを小さくするような水準を求めます.

A (アルミ配線) は A2 (無), C (薬剤 C 割合) は C1 (5%), D (レジ ストベーク温度) は D1 (100 度)の時に,加工深さを小さくすることが分かります.以上より,最適水準 A2C1D1E3 が求まりました.

手順18

また、その時の加工深さの推定値を求めます.「分散分析表」タブに戻り、推定に用いる「A」、「C」、「D」、「E」、「I」、「EI」を選んだ状態で、「推定値」グループの「推定値」タブをクリックします. 母平均の点推定値に加え、母平均の信頼区間や新たに採取されるデータの予測区間も出力されます.

	Na	A	le.	In	F	I		日亚均	信胡又問			之间区間		
1 4	VO	M	<u> </u>	U		1		머무씨	10주민스(미)			그가삤스티티		
		71/2	薬	レシ゛スト	エッチン	IIJŦ			下限(95%)	上限(9!	幅	下限(95%	上限(9	幅
	58	無	5%	100度	25度	18		137.53	124.458	50.603	13.072	110.509	64.552	27.021
	59	無	5%	100度	30度	新	min	48.70	35.625	61.769	13.072	21.676	75.718	27.021
	60	無	5%	100度	30度	18		58.60	45.525	71.669	13.072	31.576	85.618	27.021

最適水準 A2C1D1E3 において, 誤差因子 I (エッチング液新旧)が I1 (新)の時に, 加工深さが最小 となります.目標は加工深さを 90[µm]以下とすることでしたが, 母平均の点推定値は 48.70,95% 予測区間は, 21.676~75.718 となり,目標値をクリアしました.

まとめ

・外側因子 I (エッチング液の新旧) と内側因子 E (エッチング液温度) には交互作用がありますが, 誤差 因子である I (エッチング液の新旧) の変動を最も小さく抑える水準は E3 (30 度) です.
・特性値である加工深さを最小にする水準は A2C1D1 (A (無), C (5%), D(100 度)です.
・最適条件 A2C1D1E3 で, 特性値が最大, 最小になるのは 最小: I1 (エッチング液(旧)) 48.70±27.021 (21.676, 75.718) 最大: I2 (エッチング液(新)) 58.60±27.021 (31.576, 85.618) となります.
・設問より, 薄膜金属材料 Z の加工深さは小さいほど良く, かつ 90[µm]以下であることが望ましい状態でした. よって使用するエッチング液の新旧に関わらず, 求められた最適水準 A2C1D1E3 で は目標を満たすことが分かりました. 本著作物は原著作者の許可を得て,株式会社日本科学技術研修所(以下弊社) が掲載しています.本著作物の著作権については,制作した原著作者に帰属 します.

原著作者および弊社の許可なく営利・非営利・イントラネットを問わず,本 著作物の複製・転用・販売等を禁止します.

所属および役職等は,公開当時のものです.

■公開資料ページ

弊社ウェブページで各種資料をご覧いただけます <u>http://www.i-juse.co.jp/statistics/jirei/</u>

■お問い合わせ先 (株)日科技研 数理事業部 パッケージサポート係 <u>http:/www.i-juse.co.jp/statistics/support/contact.html</u>