JUSE-StatWorks/V5 品質工学編の機能と特徴 (MT法とパラメータ設計を中心として)

(株)日本科学技術研修所

数理事業部 犬伏秀生

本資料の内容は予告なく変更される場合がございます. ご了承下さい.

1

StatWorks/V5 品質工学編 新製品発表説明会(東京) (c) 2012, The Institute of JUSE

本日の説明内容

No	説明内容	発表者	時間
1	「JUSE-StatWorks/V5品質工 学編」とは	犬伏	2分
2	新規解析手法「MT法」デモンス トレーション	副田	30分
З	解析手法「MT法」に関する補足 MT法と他の解析手法との関係		15分
4	解析手法「パラメータ設計」の 紹介	犬伏	10分
5	価格・製品形態 品質工学編 試用版		3分

「JUSE-StatWorks/V5 品質工学編」とは

- 「JUSE-StatWorks/V5」シリーズは、弊社が開発・ 販売を行っている統計解析パッケージです。
- JUSE-StatWorks/V5シリーズでは、使用できる機能 に応じた複数のパッケージをご用意しております。
- この度、JUSE-StatWorks/V5に解析手法「MT法」
 を新規に搭載することになりました。
- これに伴い、JUSE-StatWorks/V5シリーズのライン ナップに、解析手法「MT法」を使用可能な3つのパッ ケージを新たに加えました(詳細は後述).
- 特に、「品質工学編」は、品質工学に関する機能(パラ メータ設計、MT法)のみをご使用いただけるパッケー ジとなります。使用できる機能が限定されている代わり に、ご導入いただき易い価格となっております。

解析手法「MT法」に関する補足

- ここでは、JUSE-StatWorks/V5の新規解析手法「MT法」の機能に関する補足を行います。
- ここでは、下記の点について簡単に紹介します;
 - 補足1:分析可能なデータ
 - 補足2:指定可能な直交表
 - 補足3:項目選択
 - 補足4: 原因分析
 - 補足5: 多重共線性への対応

補足1:分析可能なデータ

- JUSE-StatWorks/V5の解析手法「MT法」で分析可能なデータは、 量的データのみとなります(質的変数に対しては、事前にダミー変数 化などの処理を別途行って頂くことになります)
- また,解析手法「MT法」の各データ入力画面で読み込み可能なデー タサイズは,StatWorksのワークシートと同じとなります(1,000 変数×100,000サンプル)
- ただし、変数の数が500を超えると項目選択、原因分析の処理時間が 大幅にかかります。

<u>参考:変数の数と処理時間</u> との関係の目安

●テスト環境

- 機種: DELL Vostro 3500 (ノートパソコン)
- OS : Windows7 32bit
- CPU : Celeron P4500

1.87GHz

メモリ : 2GB

	<u>単位空間</u> マハラノビス距離計 算など	<u>項目選択</u> 利得計算など グラフ描画含む	<u>原因分析</u> 利得計算など グラフ描画含む				
変数の数							
サンプル数	900	50	50				
直交表	—	L212	L212				
処理時間	2 秒	1 秒	14 秒				
変数の数	200						
サンプル数	900	50	50				
直交表	—	L420	L420				
処理時間	3 秒	10 秒	23 秒				
変数の数		500					
サンプル数	900	50	50				
直交表	—	L1020	L1020				
処理時間	21 秒	6 分 12 秒	6 分 55 秒				

補足2:指定可能な直交表

- JUSE-StatWorks/V5の解析手法「MT法」の 項目選択・原因分析では、以下の条件を満たす Paley型直交表のみを指定できます;
 - 行数が4×nで、 4×n-1が素数、かつ、n が奇数
 - 行数が12~2004
- 行数が4×nのPaley型直交表は、4×n-1が素数、かつ、nが奇数の場合に、任意の2列の交互作用効果が他の列に均等にばらまかれる特徴があります^{*1}.すなわち、2水準系直交表に比べ、主効果が交互作用効果の影響を受けにくいという特徴があります。
- デフォルトでは、わりつける変数の数の2倍以 しの列数を持つ直交表の中の最小の直交表が指
 ※1『入門MTシステム』立林和夫編著 手島昌一・長谷川良子著、日科技連、p248
 2012.88
 指定可能な直交表
 (一部)
 (二部)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

6

補足3:項目選択(1)

- 「項目選択」タブで、マハラノビスの距離の算出で使用 する変数の選択を行うことができます。
- 「項目選択」タブには、利得(=第1水準(使用)の平均値-第2水準(不使用)の平均値)、分散分析の結果が出力されますので、それらの情報に基づき変数の選択を行います。
- 変数の選択/解除は、その変数の行をクリックすることにより行うことができます。
- 「項目選択」タブのメニューボタン「選択条件指定」により、"利得が大きい約半分の項目を選択"等の用意された条件で自動的に変数を選択することができます。
- 信号因子が無い場合,評価指標として、マハラノビスの 距離の平均値,SN比(望大特性)のどちらかを選択可 能です(デフォルトはマハラノビスの距離の平均値)

	JUSE Package Software - [項目選択:項目選択]								
ワーク	シート 手法選択	解析	装飾						
 保存 印刷 印刷 12 出力 	· · · · · · · · · · · · · · · · · · ·		解析アドバイス 変数再指定 解析支援		23 24 選択条件 分散分 指定 解析) 23 3析 オプション 操作	∦ 有効桁数 + ┃ 有効桁数 - 機能説明 画面	 図 図 全閉 部 並び → ウィンドウ 	 ・ ・
単位的	2間 評価 項目運	訳 判	定 原因分析						
古森主		2+0							
		E1/C (
項目要	攻:11(使用:6 不使用 	月:5)	直交表:Paley型	凹直交表L44(2^4	3) 特性值: ·	マハラノビス距	·離 翻三注分散	(:0.795 誤差自	3由度:32
No		状態	マハラノヒ・ス距離	· · · +		分散分析表			
]利得(1-2)	1: 使用	2:不使用	<u>F値</u>	p値	検定	
2	y1	不使用	0.1591	5.9454	5.7864	0.350	0.5583		
3	y2	使用	1.5222	6.6270	5.1048	32.052	0.0000	**	
4	y3	不使用	-0.4863	5.6228	6.1091	3.272	0.0799		
5	y4	使用	0.4495	6.0907	5.6412	2.795	0.1043		
6	y5	小使用	-0.3958	5.6680	6.0638	2.167	0.1507		
<u> </u>	уб	小使用	-0.4371	5.64/4	6.0845	2.643	0.1138		
8	y7	使用	2.0327	6.8822	4.8496	57.154	0.0000	**	
9	y8	使用	0.1763	5.9541	5.7778	0.430	0.5167		
10	y9	使用	0.4206	6.0762	5.6556	2.447	0.1276		
11	y10	使用	2.9837	7.3577	4.3741	123.144	0.0000	**	
12	y11	不使用_	-0.3411	5.6954	6.0365	1.610	0.2137		
 ・本画面では、単位空間に属さないデータの識別に対する有効性に基づき、マハラノビスの距離の算出で使用する変数の取捨選択を行うことができます。 ・変数の選択/解除は、行をクリックすることにより行うことができます。また、全選択、全解除等はメニューボタンで行うことができます。 ・利得は「利得=第1水準(使用する)の平均値-第2水準(使用しない)の平均値」で定義されます。 ・なお、信号因子が無い場合は、評価指標をメニューボタン「オプション」から変更することができます。 ・分散分析では、誤差分散は変数をわりつけていない列から算出しています。 									

補足3:項目選択(2)

- 項目選択前後でのマハラノビスの距離の比較・評価は、「
 評価」グループで行うことができます。
- 「評価」グループでは、項目選択対象の変数を全て使用した時("全変数")のマハラノビスの距離と、選択された変数のみを使用した時("項目選択後")のマハラノビスの距離の結果(値、グラフ)を並べて出力します。

補足4:原因分析

- 「原因分析」グループでは、異常と判断されるサンプルに対し、サンプル毎にそのサンプルのマハラノビスの距離に対する影響が大きい変数を把握することができます。
- 「原因分析」グループの「要因効果図」タブには、サンプル 毎の利得の棒グラフが一覧 (最大:10行×3列) で出力されます.
- 「原因分析」グループの「効果一覧」タブには、各サンプルの各変数に対する利得(数値)が一覧表示されます。

単位空間 速体 值日避況 判定 商田公析		
	学过工间 計画 供口语纸 计定 然公为40	
分析データ マハラノビス距離 直交表 要因効果図 効果一覧	分析データマリラルドス距離 直交表 要因効果図 効果一覧	
	直交表: Palev型店交表L20(2^18) 特性値:マハラノビス距離の利得(1:使用−2:不使用) 著色基準値:2,0以上	
ex-paper2 ex-paper3	No (サンプル名) 2554(3) 5 (8 (0 (10 (11 (11 (11 (11 (11 (11 (11 (11	
20 -	10 7 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	-11
	139 ex-paper2 10.978 7.8017 1.2052 0.8913 -0.7169 -1.6145 -2.1302	
	140 ex-paper3 12.436 12.8103 3.2855 -2.4469 -4.3512 -2.4995 -1.7518	
ex-paper5	141 ex-paper4 23.168 1.3358 5.0639 -0.9533 -0.8249 9.5827 18.5186	
20 -	142 ex-paper5 15.973 -0.6599 4.5434 -2.2838 0.4505 2.6069 15.3005	
	143 ex-paper6 12.544 -1.4570 2.3004 -1.1064 1.9159 0.8418 10.6833	
	145 ex-paper8 10.996 -1.7679 -2.1013 7.9779 5.3181 -2.0249 -1.7889	
ex-paper6 ex-paper8	146 ex-paper9 7.818 7.1461 1.5005 -1.4279 -1.7747 -1.0540 -1.4551	
20]	147 ex-paper10 15.978 -1.3643 3.9781 -1.0729 1.1742 2.0224 13.7456	
\$ 10 -	148 ex-paper11 8.938 -2.6376 -1.7325 12.3709 -1.1284 -0.4999 -1.4011	
	149 ex-paper12 13.577 6.5161 4.6521 -0.8996 -3.5839 -4.0724 1.9267	
av-paper0 av-paper10	150 ex-paper13 13.989 13.5440 3.2761 -1.3438 -4.6709 -2.7567 -2.1334	
30	151 ex-paper14 4.628 -0.3853 -0.6222 4.2902 -0.7476 0.2671 -0.3386	
se 10	152 ex-paper15 12.329 U.4065 1.0915 U.1020 -0.9099 6.3427 8.8247	
	153 ex-paper16 8.863 7.4909 1.4600 -0.7826 -1.4111 -1.2405 -1.6712	
	154 ex-paper17 7.008 -0.9841 -1.1113 7.5860 -0.5700 -0.1148 -0.7631	
ex-paper11 ex-paper12	155 ex-paper18 11.632 12.3603 3.2720 -2.7821 -4.1791 -2.4198 -1.6348	
	J962 -0.8006 6.4897 8.8935	
	8403 0.2762 1.7788 13.2878	
		-
	「ながたき」で数を確認することができます。	
StatWorks/V5 in	う賀工字編 新製品発表説明云(東京) (C)ZUT2, The Institute of 、	JUSI

補足5:多重共線性への対応

11

- 分析対象の変数の数が多くなると、変数間に多重共線性 が発生し易くなります。
- 単位データにおいて多重共線性が発生すると、マハラノ ビスの距離の算出ができなくなります。
- JUSE-StatWorks/V5の解析手法「MT法」では、多重 共線性の解消を支援するための機能を用意しております (「相関係数行列」タブの「多重共線性の確認」項目)

 単位空間 評価 項目選択 判定 原因分析 単位ジーク 実数情報 モタリング・ 相関係数行列 マバカル・ス距離 グラフ 度数分布表 多重共線性の確認 マ サンブル数:137 最小国有値:-0.00000 行列式:0.00000 	状況	利用可能な自動対処
No 固有値 【状況】 1 -0.00000 【状況】 2 0.01472 状態が「使用」の変数に関する相関係数行列の逆行列を計算できません。 3 0.04373 -0.545(2000)	標準偏差が	標準偏差がOの変数をマスク
4 0.06341 このため、このまま分析を進めることはできません。 5 0.16239 (原因と対処方法) 6 0.28938 (原因と対処方法) 7 0.42723 状態が「使用」の変数の間に多重共線性があります。 8 0.64150 すなわち、同じ値を持つ変数の組、もしくは、線形従属関係が成立している 9 0.83723 変数の集合が存在しています。 10 2.79818 対処方法としては、他の変数と従属関係にある変数をマスクする、もしく	Oの変数が 存在	標準偏差がOの変数に微小な 乱数を加える
11 5.12224 は、それらの変数のの値に微小な正規乱数を加える等が考えられます. なお、変数をマスクする場合、マスクする変数の数は、0である固有値の数以上となります.	変数間に多 → 重共線性が	変数をマスクして多重共線性 を解消する
	ある	微小な乱数を加えて多重共線 性を解消する
	品質工学編 新製品発表説明会	(東京) (c)2012. The Institute of JUSE

MT法と他の解析手法との関係

- 今回新たに搭載する解析手法「MT法」と JUSE-StatWorks/V5に既に搭載済みの解析 手法との関係を簡単に示します。
- ここでは、下記の2点を示します;
 - -2群の判別に関する解析手法との関係
 - 変数間の相関関係を分析する解析手法の紹介

StatWorks/V5 品質工学編 新製品発表説明会(東京)

2群の判別に関する分析

「MT法」は、異常/正常の判別に関する予測、要因分析を目的とした分析手法であると捉えられます。

JUSE-StatWorksに既に搭載されている解析手法にも, 2群の判別に関する予測,要因分析を目的とした解析手法が 存在します.それらの解析手法の分析イメージ,および, 「MT法」との違いは下表のようになります. 状況によって,適切な解析手法を選択して下さい.

変数間の相関関係の分析

「MT法」は、単位データ(均質なデータ、正常データ) を基準としたマハラノビス距離(変数間の相関関係を考慮し た距離)により正常/異常の判定を行います。

一方,通常「MT法」では、変数間の相関関係自体は分析の対象ではありません。

変数間の相関関係を分析対象とする場合は、JUSE-StatWorksの下記の解析手法が有用です。

主成分分析	因子分析	ク゛ラフィカルモデ゛リンク゛ (GM)	構造方程式モデリング (SEM)
少数個の主成分で 情報を要約する。 変数間,サンプル 間の関係を視覚的 に確認できる。	観測変数の背後 に共通原因(因 子)を仮定する。 変数間の相関関 係を少数の因子 の存在で説明で	偏相関係数を用い て変数間の関係を モデル化する. 変数間の関係を視 覚的に確認できる.	変数間の因果関係 のモデルを検証で きる。 様々なモデルを指 定できる。
	きる.		

解析手法「パラメータ設計」の紹介

- ここでは、JUSE-StatWorks/V5の解析手法「パラ メータ設計」の機能に関する特徴をご紹介します。
- JUSE-StatWorks/V5の解析手法「パラメータ設計」 の特徴は下記の通りです;
 - 特徴1:幅広い分析に対応
 - 特徴2:シンプルな操作手順
 - 特徴3:非線形の標準SN比にも対応
 - 特徴4:生データのグラフ化
 - 特徴5: グラフ上での最適水準指定
 - 特徴6:計算過程の出力
- 以下のスライドで上記特徴を簡単にご紹介します.
- 解析手法「パラメータ設計」のご活用もご検討いただけ れば幸いです。

特徴1:幅広い分析に対応

解析手法「パラメータ設計」は、下表の通り、幅広い分析 <u>に対応しています</u>

	設定項目	設定内容				
	内側計画種類	直交表	混合系	L12(2^11), L18(2^1×3^7), L18(6^1×3^6), L36(2^11×3^12), L36(2^3×3^13), L54(2^1×3^25)		
			3水準系	L4(2^3), L8(2^7), L16(2^15), L32(2^31), L64(2^63)		
			2水準系	L9(3^4), L27(3^13), L81(3^40)		
		要因配置計画(
	誤差因子のわり つけ	誤差因子の調合	含(2~20水準),直交表(同上),要因配置計画(1~4因子)			
	SN比・感度	特性の種類	静特性	望目特性,望小特性,望大特性,機能窓法,デジタル のSN比		
			動特性	ゼロ点比例式,一次式,非線形の標準SN比,動的機能 窓法		
			その他	SN比計算後データ		
		SN比の種類	田口のSN比,	エネルギー比型SN比		
		オプション	Veを引かない、感度として平均mを使用、感度として傾きßを使			
	信号因子の水準	水準数	全ての実験No	oで等しい,実験Noによって異なる		
20 ⁻	数・水準値	水準値	全ての実験No	oで等しい,実験Noによって異なる		

特徴2:シンプルな操作手順

解析手法「パラメータ設計」は、できるだけ少ない操作で 目的の分析結果が得られるような機能構成としております。 また、出力画面はグループ(分析の大きなステップ)・タ ブ(各出力)により整理されており、タブを順番に移動する ことにより、分析を進めることができます。

特徴3:非線形の標準SN比にも対応 JUSE-StatWorks/V5の解析手法「パラメータ設計」は 非線形の標準SN比にも対応しております. 目標値へのチューニングは、直交多項式の係数β1、β2 を用いて行うことができます.

係数 β1・係数 β2・SN比の要因効果図

(c) 2012, The Institute of JUSE

19

2012.8.8

特徴4:生データのグラフ化

解析手法「パラメータ設計」には、生データをグラフ化する機能があります。

動特性に対しては入出力図(横軸:信号,縦軸:出力), 静特性に対してはデータプロット(横軸:実験No,縦軸: 特性値)を表示できます.

特徴5: グラフ上での最適条件指定

解析手法「パラメータ設計」の要因効果図では、グラフ上のプロットをクリックすることにより、その水準を最適水準や現行水準に変更することができます.

各因子に対し,推定で用いる/用いないの設定も,同様の 操作で行うことができます.

2012.8.8

StatWorks/V5 品質工学編 新製品発表説明会(東京)

(c) 2012, The Institute of JUSE

特徴6:計算過程の出力

解析手法「パラメータ設計」の「計算過程」タブでは、 SN比・感度の算出で用いられた平方和や分散を確認することができます。

手計算の検証用などに有用です。

解析データ 効果・推定																	
実験データ	2 制御因	子 誤差因子	子 信号因子	- 入出力[図 SN比・;	感度 計算	過程										
特性種類:	- 特性種類:ゼロ点比例式[田口のSN比] 内側計画:直交表[L18(2^1×3^7)] 誤差因子:調合[水準数2]																
	傾ぎ	有効除数	平方和					自由度				分散		真数		デシベル値	
実験No	β	r	ST	S,B	SN×,3	Se	SN'	fN×,β	fe	f	'N'	Ve	VN'	{(S,8-Ve	(S,β-Ve	SNEE	感度
1	0.0176	750.00000	0.54790	0.54384	0.00156	0.00250	0.00406	1		4	5	0.00063	0.00081	0.382	0.000	-4.175	-35.081
2	0.0162	750.00000	0.48220	0.45765	0.00869	0.01586	0.02455	1		4	5	0.00396	0.00491	0.053	0.000	-12.773	-35.863
3	0.0636	750.00000	7.15250	7.07232	0.02304	0.05714	0.08018	1		4	5	0.01428	0.01604	0.252	0.004	-5.994	-23.944
4	0.0485	750.00000	4.11700	4.10917	0.00448	0.00335	0.00783	1		4	5	0.00084	0.00157	1.498	0.002	1.756	-26.294
5	0.0481	750.00000	4.08620	4.05122	0.02341	0.01157	0.03498	1		4	5	0.00289	0.00700	0.331	0.002	-4.806	-26.358
6	0.0460	750.00000	3.74390	3.70760	0.03172	0.00458	0.03630	1		4	5	0.00115	0.00726	0.292	0.002	-5.350	-26.741
7	0.0170	750.00000	0.56210	0.50575	0.04889	0.00746	0.05635	1		4	5	0.00186	0.01127	0.026	0.000	-15.926	-35.407
8	0.0293	750.00000	1.62320	1.50382	0.10569	0.01369	0.11938	1		4	5	0.00342	0.02388	0.036	0.001	-14.448	-30.668
9	0.0493	750.00000	4.29250	4.25089	0.03612	0.00549	0.04161	1		4	5	0.00137	0.00832	0.292	0.002	-5.349	-26.147
10	0.0469	750.00000	3.93540	3.85166	0.07297	0.01077	0.08374	1		4	5	0.00269	0.01675	0.131	0.002	-8.816	-26.577
11	0.0138	750.00000	0.34630	0.33327	0.00196	0.01107	0.01303	1		4	5	0.00277	0.00261	0.072	0.000	-11.398	-37.239
12	0.0675	750.00000	8.01280	7.98357	0.01209	0.01714	0.02923	1		4	5	0.00429	0.00585	0.780	0.005	-1.080	-23.411
13	0.0444	750.00000	3.48540	3.44988	0.02414	0.01138	0.03552	1		4	5	0.00284	0.00710	0.277	0.002	-5.571	-27.056
14	0.0633	750.00000	7.07740	7.01522	0.04526	0.01691	0.06218	1		4	5	0.00423	0.01244	0.322	0.004	-4.919	-23.973
15	0.0200	750.00000	0.71260	0.70000	0.00869	0.00391	0.01260	1		4	5	0.00098	0.00252	0.159	0.000	-7.999	-33.985
16	0.0593	750.00000	6.30690	6.16276	0.12772	0.01643	0.14414	1		4	5	0.00411	0.02883	0.122	0.004	-9.134	-24.536
17	0.0487	750.00000	4.18950	4.15289	0.03087	0.00574	0.03661	1		4	5	0.00143	0.00732	0.324	0.002	-4.894	-26.248
18	0.0380	750.00000	2.64470	2.53080	0.08297	0.03093	0.11390	1		4	5	0.00773	0.02278	0.063	0.001	-11.987	-28.411

価格・製品形態

• 本日ご紹介した解析手法「MT法」,「パラメータ設計」は,JUSE-StatWorks/V5 の下記のパッケージでご使用頂くことができます.

No	StatWorks/V5	標準価格	発売時期	解析手法		製品形態	
	パッケージ	(税込)		パラメータ 設計	MT法	スタント [゛] アロ ン版	ネットワ−ク 版
1	品質工学編	47,250円	2012年8月10日~	•	•	•	
2	総合編 with MT	207,900円	2012年8月末~	•	•	•	
З	総合編プレミアム	239,400円	2012年8月末~	•	•	•	۲
4	総合編 with SEM	207,900円	既発売	•		•	٠
5	総合編	176,400円	既発売	•			٠
6	設計開発技法編	134,400円	既発売	•			

 なお、「StatWorks/V5 総合編」、「StatWorks/V5 総合編 with SEM」、 「StatWorks/V5 設計開発技法編」をご使用の有償保守契約ユーザー様には、 新規解析手法「MT法」を含むカスタム機能版CDを2012年8月末~9月上旬に お送り致します。

	 ●弊社製品に関するお問合わせ先 株式会社日本科学技術研修所第2営業部 TEL:03-5379-5210 https://www.isiu.co.oc.ip/ot/ou/popert/contract.html 	●最新情報 JUSE-StatWorksに関する最新情報は下記の URLでご確認頂けます。
2	https://www.i-juse.co.jp/st/support/contact.html	http://www.i-juse.co.jp/statistics/

品質工学編 試用版

• JUSE-StatWorks/V5 品質工学編 試用版

本著作物は原著作者の許可を得て,株式会社日本科学技術研修所(以下 弊社)が掲載しています.本著作物の著作権については,制作した原著 作者に帰属します.

原著作者および弊社の許可なく営利・非営利・イントラネットを問わず, 本著作物の複製・転用・販売等を禁止します.

所属および役職等は、公開当時のものです.

■お問い合わせ先 (株)日科技研 数理事業部 パッケージサポート係 <u>http://www.i-juse.co.jp/statistics/support/contact.html</u>